{
"cells": [
{
"cell_type": "markdown",
"id": "4831226b-6033-4b15-a120-d2ef9b81f686",
"metadata": {
"tags": []
},
"source": [
"# Process CAS04 with Remote Reference\n",
"\n",
"\n",
"This notebook is a companion to the 2024 JOSS manuscript.\n",
"\n",
"This notebook is shows the workflow for getting data from Earthscope for a few example stations and generating transfer functions using aurora. The data download step is based on condensed version of a tutorial in the mth5 documentation which can be found at: https://github.com/kujaku11/mth5/tree/master/docs/examples/notebooks. \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "31595e4a-9a71-451a-a811-91e1126cdc99",
"metadata": {},
"outputs": [],
"source": [
"# %matplotlib notebook \n",
"# %matplotlib widget\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95ae061a-dc05-471b-a88c-4aaaef4ddc50",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/kkappler/software/irismt/mtpy-v2/mtpy/modeling/simpeg/recipes/inversion_2d.py:39: UserWarning: Pardiso not installed see https://github.com/simpeg/pydiso/blob/main/README.md.\n",
" warnings.warn(\n"
]
}
],
"source": [
"#Imports\n",
"\n",
"import pandas as pd\n",
"import pathlib\n",
"import os\n",
"#from aurora.sandbox.mth5_channel_summary_helpers import channel_summary_to_make_mth5\n",
"#from aurora.config import BANDS_DEFAULT_FILE\n",
"from aurora.config.config_creator import ConfigCreator\n",
"from aurora.pipelines.process_mth5 import process_mth5\n",
"from mth5.mth5 import MTH5\n",
"from mth5.clients.make_mth5 import FDSN\n",
"from mth5.utils.helpers import initialize_mth5\n",
"from mth5.processing import RunSummary, KernelDataset\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d5c3fc25-fb66-4d80-8e76-c9a23f2054c2",
"metadata": {},
"outputs": [],
"source": [
"import logging, sys\n",
"logging.disable(sys.maxsize)\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "markdown",
"id": "33e2b452-94f7-4f9e-9cf5-36765541fc2e",
"metadata": {},
"source": [
"# Make MTH5 from IRIS Data Managment Center v0.2.0 \n",
"\n",
"This example demonstrates how to build an MTH5 from data archived at IRIS, it could work with any MT data stored at an FDSN data center (probably).\n",
"\n",
"We will use the `mth5.clients.FDSN` class to build the file. There is also second way using the more generic `mth5.clients.MakeMTH5` class, which will be highlighted below. \n",
"\n",
"**Note:** this example assumes that data availability (Network, Station, Channel, Start, End) are all previously known. If you do not know the data that you want to download use [IRIS tools](https://ds.iris.edu/ds/nodes/dmc/tools/##) to get data availability. "
]
},
{
"cell_type": "markdown",
"id": "c3177306-86bc-43ae-aec3-11a71f75325d",
"metadata": {},
"source": [
"## Initialize a MakeMTH5 object\n",
"\n",
"Here, we are setting the MTH5 file version to 0.2.0 so that we can have multiple surveys in a single file. Also, setting the client to \"IRIS\". Here, we are using `obspy.clients` tools for the request. Here are the available [FDSN clients](https://docs.obspy.org/packages/obspy.clients.fdsn.html). \n",
"\n",
"**Note:** Only the \"IRIS\" client has been tested."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "46655a42-0bcf-4c86-a972-cb58f0d77158",
"metadata": {},
"outputs": [],
"source": [
"fdsn_object = FDSN(mth5_version='0.2.0')\n",
"fdsn_object.client = \"IRIS\""
]
},
{
"cell_type": "markdown",
"id": "3b1c9eb9-b60a-409e-98e7-003bc76c2f77",
"metadata": {},
"source": [
"## Make the data inquiry as a DataFrame\n",
"\n",
"There are a few ways to make the inquiry to request data. \n",
"\n",
"1. Make a DataFrame by hand. Here we will make a list of entries and then create a DataFrame with the proper column names\n",
"2. You can create a CSV file with a row for each entry. There are some formatting that you need to be aware of. That is the column names and making sure that date-times are YYYY-MM-DDThh:mm:ss\n",
"\n",
"\n",
"| Column Name | Description |\n",
"| ------------------- | --------------------------------------------------------------------------------------------------------------|\n",
"| **network** | [FDSN Network code (2 letters)](http://www.fdsn.org/networks/) |\n",
"| **station** | [FDSN Station code (usually 5 characters)](https://ds.iris.edu/ds/nodes/dmc/data/formats/seed-channel-naming/)|\n",
"| **location** | [FDSN Location code (typically not used for MT)](http://docs.fdsn.org/projects/source-identifiers/en/v1.0/location-codes.html) |\n",
"| **channel** | [FDSN Channel code (3 characters)](http://docs.fdsn.org/projects/source-identifiers/en/v1.0/channel-codes.html)|\n",
"| **start** | Start time (YYYY-MM-DDThh:mm:ss) UTC |\n",
"| **end** | End time (YYYY-MM-DDThh:mm:ss) UTC |\n",
"\n",
"In the example below, the stage is set to use two stations: CAS04 and NVR08. Commented out is an example of how to add a third station, REV06"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1888e0a6-ddf2-428b-a851-b1a9b0f5a0da",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
network
\n",
"
station
\n",
"
location
\n",
"
channel
\n",
"
start
\n",
"
end
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
8P
\n",
"
CAS04
\n",
"
\n",
"
LFE
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
1
\n",
"
8P
\n",
"
CAS04
\n",
"
\n",
"
LFN
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
2
\n",
"
8P
\n",
"
CAS04
\n",
"
\n",
"
LFZ
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
3
\n",
"
8P
\n",
"
CAS04
\n",
"
\n",
"
LQE
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
4
\n",
"
8P
\n",
"
CAS04
\n",
"
\n",
"
LQN
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
5
\n",
"
8P
\n",
"
NVR08
\n",
"
\n",
"
LFE
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
6
\n",
"
8P
\n",
"
NVR08
\n",
"
\n",
"
LFN
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
7
\n",
"
8P
\n",
"
NVR08
\n",
"
\n",
"
LFZ
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
8
\n",
"
8P
\n",
"
NVR08
\n",
"
\n",
"
LQE
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
"
\n",
"
9
\n",
"
8P
\n",
"
NVR08
\n",
"
\n",
"
LQN
\n",
"
2020-06-02T19:00:00
\n",
"
2020-07-13T19:00:00
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" network station location channel start end\n",
"0 8P CAS04 LFE 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"1 8P CAS04 LFN 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"2 8P CAS04 LFZ 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"3 8P CAS04 LQE 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"4 8P CAS04 LQN 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"5 8P NVR08 LFE 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"6 8P NVR08 LFN 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"7 8P NVR08 LFZ 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"8 8P NVR08 LQE 2020-06-02T19:00:00 2020-07-13T19:00:00\n",
"9 8P NVR08 LQN 2020-06-02T19:00:00 2020-07-13T19:00:00"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"channels = [\"LFE\", \"LFN\", \"LFZ\", \"LQE\", \"LQN\"]\n",
"CAS04 = [\"8P\", \"CAS04\", '2020-06-02T19:00:00', '2020-07-13T19:00:00'] \n",
"NVR08 = [\"8P\", \"NVR08\", '2020-06-02T19:00:00', '2020-07-13T19:00:00']\n",
"# REV06 = [\"8P\", \"REV06\", '2020-06-02T19:00:00', '2020-07-13T19:00:00']\n",
"\n",
"stations = [CAS04, NVR08,]\n",
"# stations.append(REV06)\n",
"\n",
"request_list = []\n",
"for entry in stations:\n",
" for channel in channels:\n",
" request_list.append(\n",
" [entry[0], entry[1], \"\", channel, entry[2], entry[3]]\n",
" )\n",
"\n",
"# Turn list into dataframe\n",
"request_df = pd.DataFrame(request_list, columns=fdsn_object.request_columns) \n",
"request_df"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "496678c6-18b2-41cb-a0b5-5ebf51bab0eb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m24:09:03T20:08:45 | INFO | line:679 |mth5.mth5 | _initialize_file | Initialized MTH5 0.2.0 file /home/kkappler/software/irismt/aurora/docs/tutorials/8P_CAS04_NVR08.h5 in mode w\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_92.000 to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_94.000 to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_si_units to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:03 | INFO | line:133 |mt_metadata.timeseries.filters.obspy_stages | create_filter_from_stage | Converting PoleZerosResponseStage electric_dipole_94.000 to a CoefficientFilter.\u001b[0m\n",
"\u001b[1m24:09:03T20:09:05 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup a already exists, returning existing group.\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:05 | WARNING | line:645 |mth5.timeseries.run_ts | validate_metadata | start time of dataset 2020-06-02T19:00:00+00:00 does not match metadata start 2020-06-02T18:41:43+00:00 updating metatdata value to 2020-06-02T19:00:00+00:00\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:06 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[1m24:09:03T20:09:06 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup b already exists, returning existing group.\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:07 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:07 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:08 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:08 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:08 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[1m24:09:03T20:09:08 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup c already exists, returning existing group.\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:09 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:09 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:10 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:10 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:10 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[1m24:09:03T20:09:10 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup d already exists, returning existing group.\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:11 | WARNING | line:658 |mth5.timeseries.run_ts | validate_metadata | end time of dataset 2020-07-13T19:00:00+00:00 does not match metadata end 2020-07-13T21:46:12+00:00 updating metatdata value to 2020-07-13T19:00:00+00:00\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:11 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:11 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:11 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:12 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:12 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id d. Setting to ch.run_metadata.id to d\u001b[0m\n",
"\u001b[1m24:09:03T20:09:12 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup a already exists, returning existing group.\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:12 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:12 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:13 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:13 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:13 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id a. Setting to ch.run_metadata.id to a\u001b[0m\n",
"\u001b[1m24:09:03T20:09:13 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup b already exists, returning existing group.\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:14 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:14 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:14 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:14 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:15 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id b. Setting to ch.run_metadata.id to b\u001b[0m\n",
"\u001b[1m24:09:03T20:09:15 | INFO | line:331 |mth5.groups.base | _add_group | RunGroup c already exists, returning existing group.\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:15 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:677 |mth5.groups.run | from_runts | Channel run.id sr1_001 != group run.id c. Setting to ch.run_metadata.id to c\u001b[0m\n",
"\u001b[1m24:09:03T20:09:16 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing /home/kkappler/software/irismt/aurora/docs/tutorials/8P_CAS04_NVR08.h5\u001b[0m\n",
"\u001b[33m\u001b[1m24:09:03T20:09:16 | WARNING | line:330 |mth5.mth5 | filename | MTH5 file is not open or has not been created yet. Returning default name\u001b[0m\n",
"Created /home/kkappler/software/irismt/aurora/docs/tutorials/8P_CAS04_NVR08.h5\n",
"CPU times: user 14.5 s, sys: 349 ms, total: 14.8 s\n",
"Wall time: 31.9 s\n"
]
}
],
"source": [
"%%time\n",
"\n",
"mth5_filename = fdsn_object.make_mth5_from_fdsn_client(request_df)\n",
"\n",
"print(f\"Created {mth5_filename}\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7c69ae65-db2c-4fd8-ab2b-2a44ff9085a0",
"metadata": {},
"outputs": [],
"source": [
"mth5_path = pathlib.Path(\"8P_CAS04_NVR08.h5\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "8c07f52e-7e2b-4589-9632-9213d8d7050b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
survey
\n",
"
station
\n",
"
run
\n",
"
latitude
\n",
"
longitude
\n",
"
elevation
\n",
"
component
\n",
"
start
\n",
"
end
\n",
"
n_samples
\n",
"
sample_rate
\n",
"
measurement_type
\n",
"
azimuth
\n",
"
tilt
\n",
"
units
\n",
"
has_data
\n",
"
hdf5_reference
\n",
"
run_hdf5_reference
\n",
"
station_hdf5_reference
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
a
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
ex
\n",
"
2020-06-02 19:00:00+00:00
\n",
"
2020-06-02 22:07:46+00:00
\n",
"
11267
\n",
"
1.0
\n",
"
electric
\n",
"
13.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
1
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
a
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
ey
\n",
"
2020-06-02 19:00:00+00:00
\n",
"
2020-06-02 22:07:46+00:00
\n",
"
11267
\n",
"
1.0
\n",
"
electric
\n",
"
103.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
2
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
a
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hx
\n",
"
2020-06-02 19:00:00+00:00
\n",
"
2020-06-02 22:07:46+00:00
\n",
"
11267
\n",
"
1.0
\n",
"
magnetic
\n",
"
13.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
3
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
a
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hy
\n",
"
2020-06-02 19:00:00+00:00
\n",
"
2020-06-02 22:07:46+00:00
\n",
"
11267
\n",
"
1.0
\n",
"
magnetic
\n",
"
103.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
4
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
a
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hz
\n",
"
2020-06-02 19:00:00+00:00
\n",
"
2020-06-02 22:07:46+00:00
\n",
"
11267
\n",
"
1.0
\n",
"
magnetic
\n",
"
0.0
\n",
"
90.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
5
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
b
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
ex
\n",
"
2020-06-02 22:24:55+00:00
\n",
"
2020-06-12 17:52:23+00:00
\n",
"
847649
\n",
"
1.0
\n",
"
electric
\n",
"
13.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
6
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
b
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
ey
\n",
"
2020-06-02 22:24:55+00:00
\n",
"
2020-06-12 17:52:23+00:00
\n",
"
847649
\n",
"
1.0
\n",
"
electric
\n",
"
103.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
7
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
b
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hx
\n",
"
2020-06-02 22:24:55+00:00
\n",
"
2020-06-12 17:52:23+00:00
\n",
"
847649
\n",
"
1.0
\n",
"
magnetic
\n",
"
13.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
8
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
b
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hy
\n",
"
2020-06-02 22:24:55+00:00
\n",
"
2020-06-12 17:52:23+00:00
\n",
"
847649
\n",
"
1.0
\n",
"
magnetic
\n",
"
103.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
9
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
b
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hz
\n",
"
2020-06-02 22:24:55+00:00
\n",
"
2020-06-12 17:52:23+00:00
\n",
"
847649
\n",
"
1.0
\n",
"
magnetic
\n",
"
0.0
\n",
"
90.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
10
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
c
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
ex
\n",
"
2020-06-12 18:32:17+00:00
\n",
"
2020-07-01 17:32:59+00:00
\n",
"
1638043
\n",
"
1.0
\n",
"
electric
\n",
"
13.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
11
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
c
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
ey
\n",
"
2020-06-12 18:32:17+00:00
\n",
"
2020-07-01 17:32:59+00:00
\n",
"
1638043
\n",
"
1.0
\n",
"
electric
\n",
"
103.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
12
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
c
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hx
\n",
"
2020-06-12 18:32:17+00:00
\n",
"
2020-07-01 17:32:59+00:00
\n",
"
1638043
\n",
"
1.0
\n",
"
magnetic
\n",
"
13.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
13
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
c
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hy
\n",
"
2020-06-12 18:32:17+00:00
\n",
"
2020-07-01 17:32:59+00:00
\n",
"
1638043
\n",
"
1.0
\n",
"
magnetic
\n",
"
103.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
14
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
c
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hz
\n",
"
2020-06-12 18:32:17+00:00
\n",
"
2020-07-01 17:32:59+00:00
\n",
"
1638043
\n",
"
1.0
\n",
"
magnetic
\n",
"
0.0
\n",
"
90.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
15
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
d
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
ex
\n",
"
2020-07-01 19:36:55+00:00
\n",
"
2020-07-13 19:00:00+00:00
\n",
"
1034586
\n",
"
1.0
\n",
"
electric
\n",
"
13.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
16
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
d
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
ey
\n",
"
2020-07-01 19:36:55+00:00
\n",
"
2020-07-13 19:00:00+00:00
\n",
"
1034586
\n",
"
1.0
\n",
"
electric
\n",
"
103.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
17
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
d
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hx
\n",
"
2020-07-01 19:36:55+00:00
\n",
"
2020-07-13 19:00:00+00:00
\n",
"
1034586
\n",
"
1.0
\n",
"
magnetic
\n",
"
13.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
18
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
d
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hy
\n",
"
2020-07-01 19:36:55+00:00
\n",
"
2020-07-13 19:00:00+00:00
\n",
"
1034586
\n",
"
1.0
\n",
"
magnetic
\n",
"
103.2
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
19
\n",
"
CONUS South
\n",
"
CAS04
\n",
"
d
\n",
"
37.633351
\n",
"
-121.468382
\n",
"
335.261765
\n",
"
hz
\n",
"
2020-07-01 19:36:55+00:00
\n",
"
2020-07-13 19:00:00+00:00
\n",
"
1034586
\n",
"
1.0
\n",
"
magnetic
\n",
"
0.0
\n",
"
90.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
20
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
a
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
ex
\n",
"
2020-06-03 19:10:11+00:00
\n",
"
2020-06-03 19:57:51+00:00
\n",
"
2861
\n",
"
1.0
\n",
"
electric
\n",
"
12.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
21
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
a
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
ey
\n",
"
2020-06-03 19:10:11+00:00
\n",
"
2020-06-03 19:57:51+00:00
\n",
"
2861
\n",
"
1.0
\n",
"
electric
\n",
"
102.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
22
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
a
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hx
\n",
"
2020-06-03 19:10:11+00:00
\n",
"
2020-06-03 19:57:51+00:00
\n",
"
2861
\n",
"
1.0
\n",
"
magnetic
\n",
"
12.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
23
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
a
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hy
\n",
"
2020-06-03 19:10:11+00:00
\n",
"
2020-06-03 19:57:51+00:00
\n",
"
2861
\n",
"
1.0
\n",
"
magnetic
\n",
"
102.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
24
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
a
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hz
\n",
"
2020-06-03 19:10:11+00:00
\n",
"
2020-06-03 19:57:51+00:00
\n",
"
2861
\n",
"
1.0
\n",
"
magnetic
\n",
"
0.0
\n",
"
90.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
25
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
b
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
ex
\n",
"
2020-06-03 20:14:13+00:00
\n",
"
2020-06-14 16:56:02+00:00
\n",
"
938510
\n",
"
1.0
\n",
"
electric
\n",
"
12.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
26
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
b
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
ey
\n",
"
2020-06-03 20:14:13+00:00
\n",
"
2020-06-14 16:56:02+00:00
\n",
"
938510
\n",
"
1.0
\n",
"
electric
\n",
"
102.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
27
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
b
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hx
\n",
"
2020-06-03 20:14:13+00:00
\n",
"
2020-06-14 16:56:02+00:00
\n",
"
938510
\n",
"
1.0
\n",
"
magnetic
\n",
"
12.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
28
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
b
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hy
\n",
"
2020-06-03 20:14:13+00:00
\n",
"
2020-06-14 16:56:02+00:00
\n",
"
938510
\n",
"
1.0
\n",
"
magnetic
\n",
"
102.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
29
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
b
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hz
\n",
"
2020-06-03 20:14:13+00:00
\n",
"
2020-06-14 16:56:02+00:00
\n",
"
938510
\n",
"
1.0
\n",
"
magnetic
\n",
"
0.0
\n",
"
90.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
30
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
c
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
ex
\n",
"
2020-06-14 18:00:44+00:00
\n",
"
2020-06-24 15:55:46+00:00
\n",
"
856503
\n",
"
1.0
\n",
"
electric
\n",
"
12.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
31
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
c
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
ey
\n",
"
2020-06-14 18:00:44+00:00
\n",
"
2020-06-24 15:55:46+00:00
\n",
"
856503
\n",
"
1.0
\n",
"
electric
\n",
"
102.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
32
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
c
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hx
\n",
"
2020-06-14 18:00:44+00:00
\n",
"
2020-06-24 15:55:46+00:00
\n",
"
856503
\n",
"
1.0
\n",
"
magnetic
\n",
"
12.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
33
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
c
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hy
\n",
"
2020-06-14 18:00:44+00:00
\n",
"
2020-06-24 15:55:46+00:00
\n",
"
856503
\n",
"
1.0
\n",
"
magnetic
\n",
"
102.6
\n",
"
0.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
"
\n",
"
34
\n",
"
CONUS South
\n",
"
NVR08
\n",
"
c
\n",
"
38.326630
\n",
"
-118.082382
\n",
"
1377.902271
\n",
"
hz
\n",
"
2020-06-14 18:00:44+00:00
\n",
"
2020-06-24 15:55:46+00:00
\n",
"
856503
\n",
"
1.0
\n",
"
magnetic
\n",
"
0.0
\n",
"
90.0
\n",
"
digital counts
\n",
"
True
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
<HDF5 object reference>
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" survey station run latitude longitude elevation component \\\n",
"0 CONUS South CAS04 a 37.633351 -121.468382 335.261765 ex \n",
"1 CONUS South CAS04 a 37.633351 -121.468382 335.261765 ey \n",
"2 CONUS South CAS04 a 37.633351 -121.468382 335.261765 hx \n",
"3 CONUS South CAS04 a 37.633351 -121.468382 335.261765 hy \n",
"4 CONUS South CAS04 a 37.633351 -121.468382 335.261765 hz \n",
"5 CONUS South CAS04 b 37.633351 -121.468382 335.261765 ex \n",
"6 CONUS South CAS04 b 37.633351 -121.468382 335.261765 ey \n",
"7 CONUS South CAS04 b 37.633351 -121.468382 335.261765 hx \n",
"8 CONUS South CAS04 b 37.633351 -121.468382 335.261765 hy \n",
"9 CONUS South CAS04 b 37.633351 -121.468382 335.261765 hz \n",
"10 CONUS South CAS04 c 37.633351 -121.468382 335.261765 ex \n",
"11 CONUS South CAS04 c 37.633351 -121.468382 335.261765 ey \n",
"12 CONUS South CAS04 c 37.633351 -121.468382 335.261765 hx \n",
"13 CONUS South CAS04 c 37.633351 -121.468382 335.261765 hy \n",
"14 CONUS South CAS04 c 37.633351 -121.468382 335.261765 hz \n",
"15 CONUS South CAS04 d 37.633351 -121.468382 335.261765 ex \n",
"16 CONUS South CAS04 d 37.633351 -121.468382 335.261765 ey \n",
"17 CONUS South CAS04 d 37.633351 -121.468382 335.261765 hx \n",
"18 CONUS South CAS04 d 37.633351 -121.468382 335.261765 hy \n",
"19 CONUS South CAS04 d 37.633351 -121.468382 335.261765 hz \n",
"20 CONUS South NVR08 a 38.326630 -118.082382 1377.902271 ex \n",
"21 CONUS South NVR08 a 38.326630 -118.082382 1377.902271 ey \n",
"22 CONUS South NVR08 a 38.326630 -118.082382 1377.902271 hx \n",
"23 CONUS South NVR08 a 38.326630 -118.082382 1377.902271 hy \n",
"24 CONUS South NVR08 a 38.326630 -118.082382 1377.902271 hz \n",
"25 CONUS South NVR08 b 38.326630 -118.082382 1377.902271 ex \n",
"26 CONUS South NVR08 b 38.326630 -118.082382 1377.902271 ey \n",
"27 CONUS South NVR08 b 38.326630 -118.082382 1377.902271 hx \n",
"28 CONUS South NVR08 b 38.326630 -118.082382 1377.902271 hy \n",
"29 CONUS South NVR08 b 38.326630 -118.082382 1377.902271 hz \n",
"30 CONUS South NVR08 c 38.326630 -118.082382 1377.902271 ex \n",
"31 CONUS South NVR08 c 38.326630 -118.082382 1377.902271 ey \n",
"32 CONUS South NVR08 c 38.326630 -118.082382 1377.902271 hx \n",
"33 CONUS South NVR08 c 38.326630 -118.082382 1377.902271 hy \n",
"34 CONUS South NVR08 c 38.326630 -118.082382 1377.902271 hz \n",
"\n",
" start end n_samples \\\n",
"0 2020-06-02 19:00:00+00:00 2020-06-02 22:07:46+00:00 11267 \n",
"1 2020-06-02 19:00:00+00:00 2020-06-02 22:07:46+00:00 11267 \n",
"2 2020-06-02 19:00:00+00:00 2020-06-02 22:07:46+00:00 11267 \n",
"3 2020-06-02 19:00:00+00:00 2020-06-02 22:07:46+00:00 11267 \n",
"4 2020-06-02 19:00:00+00:00 2020-06-02 22:07:46+00:00 11267 \n",
"5 2020-06-02 22:24:55+00:00 2020-06-12 17:52:23+00:00 847649 \n",
"6 2020-06-02 22:24:55+00:00 2020-06-12 17:52:23+00:00 847649 \n",
"7 2020-06-02 22:24:55+00:00 2020-06-12 17:52:23+00:00 847649 \n",
"8 2020-06-02 22:24:55+00:00 2020-06-12 17:52:23+00:00 847649 \n",
"9 2020-06-02 22:24:55+00:00 2020-06-12 17:52:23+00:00 847649 \n",
"10 2020-06-12 18:32:17+00:00 2020-07-01 17:32:59+00:00 1638043 \n",
"11 2020-06-12 18:32:17+00:00 2020-07-01 17:32:59+00:00 1638043 \n",
"12 2020-06-12 18:32:17+00:00 2020-07-01 17:32:59+00:00 1638043 \n",
"13 2020-06-12 18:32:17+00:00 2020-07-01 17:32:59+00:00 1638043 \n",
"14 2020-06-12 18:32:17+00:00 2020-07-01 17:32:59+00:00 1638043 \n",
"15 2020-07-01 19:36:55+00:00 2020-07-13 19:00:00+00:00 1034586 \n",
"16 2020-07-01 19:36:55+00:00 2020-07-13 19:00:00+00:00 1034586 \n",
"17 2020-07-01 19:36:55+00:00 2020-07-13 19:00:00+00:00 1034586 \n",
"18 2020-07-01 19:36:55+00:00 2020-07-13 19:00:00+00:00 1034586 \n",
"19 2020-07-01 19:36:55+00:00 2020-07-13 19:00:00+00:00 1034586 \n",
"20 2020-06-03 19:10:11+00:00 2020-06-03 19:57:51+00:00 2861 \n",
"21 2020-06-03 19:10:11+00:00 2020-06-03 19:57:51+00:00 2861 \n",
"22 2020-06-03 19:10:11+00:00 2020-06-03 19:57:51+00:00 2861 \n",
"23 2020-06-03 19:10:11+00:00 2020-06-03 19:57:51+00:00 2861 \n",
"24 2020-06-03 19:10:11+00:00 2020-06-03 19:57:51+00:00 2861 \n",
"25 2020-06-03 20:14:13+00:00 2020-06-14 16:56:02+00:00 938510 \n",
"26 2020-06-03 20:14:13+00:00 2020-06-14 16:56:02+00:00 938510 \n",
"27 2020-06-03 20:14:13+00:00 2020-06-14 16:56:02+00:00 938510 \n",
"28 2020-06-03 20:14:13+00:00 2020-06-14 16:56:02+00:00 938510 \n",
"29 2020-06-03 20:14:13+00:00 2020-06-14 16:56:02+00:00 938510 \n",
"30 2020-06-14 18:00:44+00:00 2020-06-24 15:55:46+00:00 856503 \n",
"31 2020-06-14 18:00:44+00:00 2020-06-24 15:55:46+00:00 856503 \n",
"32 2020-06-14 18:00:44+00:00 2020-06-24 15:55:46+00:00 856503 \n",
"33 2020-06-14 18:00:44+00:00 2020-06-24 15:55:46+00:00 856503 \n",
"34 2020-06-14 18:00:44+00:00 2020-06-24 15:55:46+00:00 856503 \n",
"\n",
" sample_rate measurement_type azimuth tilt units has_data \\\n",
"0 1.0 electric 13.2 0.0 digital counts True \n",
"1 1.0 electric 103.2 0.0 digital counts True \n",
"2 1.0 magnetic 13.2 0.0 digital counts True \n",
"3 1.0 magnetic 103.2 0.0 digital counts True \n",
"4 1.0 magnetic 0.0 90.0 digital counts True \n",
"5 1.0 electric 13.2 0.0 digital counts True \n",
"6 1.0 electric 103.2 0.0 digital counts True \n",
"7 1.0 magnetic 13.2 0.0 digital counts True \n",
"8 1.0 magnetic 103.2 0.0 digital counts True \n",
"9 1.0 magnetic 0.0 90.0 digital counts True \n",
"10 1.0 electric 13.2 0.0 digital counts True \n",
"11 1.0 electric 103.2 0.0 digital counts True \n",
"12 1.0 magnetic 13.2 0.0 digital counts True \n",
"13 1.0 magnetic 103.2 0.0 digital counts True \n",
"14 1.0 magnetic 0.0 90.0 digital counts True \n",
"15 1.0 electric 13.2 0.0 digital counts True \n",
"16 1.0 electric 103.2 0.0 digital counts True \n",
"17 1.0 magnetic 13.2 0.0 digital counts True \n",
"18 1.0 magnetic 103.2 0.0 digital counts True \n",
"19 1.0 magnetic 0.0 90.0 digital counts True \n",
"20 1.0 electric 12.6 0.0 digital counts True \n",
"21 1.0 electric 102.6 0.0 digital counts True \n",
"22 1.0 magnetic 12.6 0.0 digital counts True \n",
"23 1.0 magnetic 102.6 0.0 digital counts True \n",
"24 1.0 magnetic 0.0 90.0 digital counts True \n",
"25 1.0 electric 12.6 0.0 digital counts True \n",
"26 1.0 electric 102.6 0.0 digital counts True \n",
"27 1.0 magnetic 12.6 0.0 digital counts True \n",
"28 1.0 magnetic 102.6 0.0 digital counts True \n",
"29 1.0 magnetic 0.0 90.0 digital counts True \n",
"30 1.0 electric 12.6 0.0 digital counts True \n",
"31 1.0 electric 102.6 0.0 digital counts True \n",
"32 1.0 magnetic 12.6 0.0 digital counts True \n",
"33 1.0 magnetic 102.6 0.0 digital counts True \n",
"34 1.0 magnetic 0.0 90.0 digital counts True \n",
"\n",
" hdf5_reference run_hdf5_reference station_hdf5_reference \n",
"0 \n",
"1 \n",
"2 \n",
"3 \n",
"4 \n",
"5 \n",
"6 \n",
"7 \n",
"8 \n",
"9 \n",
"10 \n",
"11 \n",
"12 \n",
"13 \n",
"14 \n",
"15 \n",
"16 \n",
"17 \n",
"18 \n",
"19 \n",
"20 \n",
"21 \n",
"22 \n",
"23 \n",
"24 \n",
"25 \n",
"26 \n",
"27 \n",
"28 \n",
"29 \n",
"30 \n",
"31 \n",
"32 \n",
"33 \n",
"34 "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m = initialize_mth5(mth5_path)\n",
"m.channel_summary.summarize()\n",
"df = m.channel_summary.to_dataframe()\n",
"df"
]
},
{
"cell_type": "markdown",
"id": "33ced6db-834d-4be1-9858-42fe12fd86fe",
"metadata": {},
"source": [
"## Fix Survey Name\n",
"\n",
"- The survey name is extracted from the metadata provided by Earthscope\n",
"- The value of the survey name was changed from \"CONUS South\" to \"CONUS SoCal\", and the notebook was updated to reflect this, however, as of June 30, 2024, the name seems to have changed back to \"CONUS South\".\n",
"- To avoid problems wiht these change of nomencalature we extract the survey name as a variable"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "757817bc-9c4b-4208-adfd-af8e8ffb3439",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'CONUS South'"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"survey_id = df[\"survey\"].unique()[0]\n",
"survey_id"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "c859de21-1c56-4393-b971-c732d2cb7735",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['CAS04', 'NVR08'], dtype=object)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.station.unique()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "8a6c8a47-b91d-41e1-ae8d-a5f98d8aeb7b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m24:09:03T20:09:17 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
},
{
"data": {
"text/html": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m24:09:03T20:09:40 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n",
"\u001b[1m24:09:03T20:09:40 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
}
],
"source": [
"show_plot = True\n",
"z_file_path = pathlib.Path(f\"{tf_file_base}.zrr\")\n",
"tf_cls = process_mth5(config,\n",
" kernel_dataset,\n",
" units=\"MT\",\n",
" show_plot=show_plot,\n",
" z_file_path=z_file_path,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "2ee6e117-c7e1-40ba-9981-5f2a189e404a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"MT( station='CAS04', latitude=37.63, longitude=-121.47, elevation=335.26 )"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tf_cls.write(fn=f\"{tf_file_base}.xml\", file_type=\"emtfxml\")\n",
"tf_cls.write(fn=f\"{tf_file_base}.edi\", file_type=\"edi\")\n",
"tf_cls.write(fn=f\"{tf_file_base}.zrr\", file_type=\"zrr\")"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "763704e0-ceed-43be-ad70-82e7709d7758",
"metadata": {},
"outputs": [],
"source": [
"archived_z_file = pathlib.Path(f\"CAS04bcd_REV06.zrr\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "e711cde6-6e35-4335-a1ef-e022f6af7839",
"metadata": {},
"outputs": [],
"source": [
"from aurora.transfer_function.plot.comparison_plots import compare_two_z_files\n",
"z_file_path = \"CAS04_RRNVR08.zrr\""
]
},
{
"cell_type": "markdown",
"id": "500c63da-86c7-42bc-948f-561473982c2f",
"metadata": {},
"source": [
"# To compare with the archived file, we need to set the coordinate system to geographic\n",
"\n",
"The TF will be output with a header like this:\n",
"\n",
"```\n",
"TRANSFER FUNCTIONS IN MEASUREMENT COORDINATES\n",
"********* WITH FULL ERROR COVARIANCE ********\n",
"Aurora Robust Remote Reference\n",
"station: CAS04\n",
"coordinate 37.633 -121.468 declination 13.17\n",
"number of channels 5 number of frequencies 25\n",
" orientations and tilts of each channel\n",
" 1 13.20 0.00 CAS04 Hx\n",
" 2 103.20 0.00 CAS04 Hy\n",
" 3 0.00 90.00 CAS04 Hz\n",
" 4 13.20 0.00 CAS04 Ex\n",
" 5 103.20 0.00 CAS04 Ey\n",
"```\n",
"\n",
"To remove the rotation, we can use a variety of tools, but another way is just to overwrite the orientations:\n",
"\n",
"```\n",
"TRANSFER FUNCTIONS IN MEASUREMENT COORDINATES\n",
"********* WITH FULL ERROR COVARIANCE ********\n",
" Aurora Robust Remote Reference\n",
"station: CAS04\n",
"coordinate 37.633 -121.468 declination 13.17\n",
"number of channels 5 number of frequencies 25\n",
" orientations and tilts of each channel\n",
" 1 0.00 0.00 CAS04 Hx\n",
" 2 90.00 0.00 CAS04 Hy\n",
" 3 0.00 90.00 CAS04 Hz\n",
" 4 0.00 0.00 CAS04 Ex\n",
" 5 90.00 0.00 CAS04 Ey\n",
"```\n",
"\n",
"This is why we set angle1=13.2 degrees in the comparison plotter."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "f5901d39-cacc-4c3f-9a1b-fd2fb33458e9",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CAS04_RRNVR08.zrr\n",
"CAS04bcd_REV06.zrr\n",
"CAS04_RRNVR08\n"
]
}
],
"source": [
"print(z_file_path)\n",
"print(archived_z_file)\n",
"print(tf_file_base)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "e3a85530-c001-45b3-a550-1f57548deb1d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m24:09:03T20:09:41 | INFO | line:86 |aurora.transfer_function.plot.comparison_plots | compare_two_z_files | Sacling TF scale_factor1: 1\u001b[0m\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABsMAAAUzCAYAAACQYFlXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3SUxf7H8c8mIaTTm0IIgoAUIaGjSFGwYTdgxaCAHbg2lIsUO1aIChaQKIqKWPCiF0W6CkIISFMQJIQuUlI2wSSb/f2R3+5l07P12eX9OmePeWbnmfnOZMKes19nHpPVarXK4BYtWqSrr75aJpNJVqtVwcHB+uWXX5SQkODr0AAAAAAAAAAAAGBgQb4OoCr2799v/9lkMunqq68mEQYAAAAAAAAAAIBK+UUy7Pjx45Ik2ya2AQMG+DIcAAAAAAAAAAAA+Am/SIZFRUU5XDdq1MhHkQAAAAAAAAAAAMCf+EUyLC4uzuE6OzvbN4EAAAAAAAAAAADAr4T4OoCq6Natm0wmk/16z549PowGAAAAAAAAAAAA/sIvdoY1adJEvXv3tj8zbPHixT6OCAAAAAAAAAAAAP7AL5JhkvTYY49JkqxWqzZs2KAVK1b4NiAAAAAAAAAAAAAYnslq227lB2644QZ9+eWXMplMOuecc7RmzRrVr1/f12EBAAAAAAAAAADAoPxmZ5gkzZkzRwkJCbJarfrzzz918cUXa8eOHb4OCwAAAAAAAAAAAAblV8mwmJgYLV26VIMGDZLVatWWLVuUkJCge++9V+vXr1dRUZGvQwQAAAAAAAAAAICB+NUxiTZWq1XTpk3TxIkTZTabZTKZJEkRERFq3ry56tSpoxo1ajjVtslk0tKlS90ZLgAAAAAAAAAAAHwkxNcBOOPAgQPasWOHrFarTCaTbPk8s9ms7du325Nj1WVrDwAAAAAAAAAAAIHB75Jhs2bN0tixY5WXl2cvI4EFAAAAAAAAAACAsvhVMuyVV17RY489Zt8JVjIJ5ocnPgIAAAAAAAAAAMCD/CYZ9ssvv+ixxx6T5JgEsyXAatWqpdjYWEVHRzv9vDAAAAAAAAAAAAAEFr9Jhj3++OMOz/SyWq1q2LChHnnkEd1www1q0aKFjyMEAAAAAAAAAACA0ZisfnC2YEZGhuLi4mQymewJsQsuuED/+c9/VKtWLV+HBwAAAAAAAAAAAIMK8nUAVbFmzRqH65iYGH3++eckwgAAAAAAAAAAAFAhv0iGHThwwP6zyWRSYmKiGjRo4MOIAAAAAAAAAAAA4A/8Ihl26tQpScXPCZOkHj16+DIcAAAAAAAAAAAA+Am/SIaVPA6xdu3avgkEAAAAAAAAAAAAfsUvkmHnnnuupOIjEiXp+PHjvgwHAAAAAAAAAAAAfsIvkmE9e/ZUSEiI/Xrr1q0+jAYAAAAAAAAAAAD+wi+SYTExMbr88stltVpltVr1n//8x/78MAAAAAAAAAAAAKA8JqufZJXWr1+vXr162ZNgb731lkaOHOnjqOBJ+fn5Wr9+vdauXatff/1VO3bsUEZGhk6ePKnCwkLVqlVLzZo1U7du3ZSYmKhLLrnEfpQmAAAAAAAAAACA5EfJMEl68skn9eyzz8pkMikiIkJLly5V9+7dfR0WPGTkyJGaNWtWlet36dJFs2fPVqdOnTwYFQAAAAAAAAAA8Cd+cUyizdNPP60RI0bIarXKbDbr4osv1nvvvefrsOAhJfO00dHR6tSpk/r166d+/fqpTZs2Cgr63xLesGGD+vTpo59//tnboQIAAAAAAAAAAIPyq51hNsnJyRo3bpz++ecfmUwmtW7dWsOHD9dFF12kVq1aqU6dOgoODvZ1mHDRmDFjtG/fPg0ePNj+uy3pr7/+0vTp0zV16lRZLBZJUvPmzbVt2zZFRkZ6O2QAAAAAAAAAAGAwfpMMKy+5ZQvfXc+KMplMKiwsdEtb8J5Zs2Y5PENuzpw5SkpK8l1AAAAAAAAAAADAEPzmmESr1VrqJRUnr0wmU5nvO/uC/xkxYoRatmxpv16+fLkPowEAAAAAAAAAAEbhN8kw6X+JL9urovececG/JSQk2H8+fPiwDyMBAAAAAAAAAABGEeLrAKqDXVvGcvToUa1fv167d+9WVlaWatSooXr16qldu3bq2rWratSo4dV4Tj/eMiYmxqt9AwAAAAAAAAAAY/KbZNikSZN8HYJhHD9+XKmpqfbXhg0blJGRUaqep5KHCxYs0PTp0/XTTz+V20d0dLSGDBmixx57TK1bt/ZIHKcrKCjQmjVr7Ne9e/f2eJ8AAAAAAAAAAMD4TFa2Wxne1q1b9c0332jDhg1KTU3Vnj17qnSfu3+1Bw4c0K233qqVK1dW+Z7Q0FBNmDBBEyZM8OhRlI899pheeuklSVL9+vW1Y8cO1a1b12P9AQAAAAAAAAAA/0AyzA+MHTtW06dPr/Z97vzV7ty5U/369dOhQ4ecuv/mm2/W3LlzFRwc7JZ4CgsLdfToUf3yyy+aMWOGlixZIkkKDw/X119/rUsuucQt/QAAAAAAAAAAAP/mN8ckwneOHTumgQMHlpkI69Kli6655hq1aNFCeXl52rlzp+bNm6eDBw861Pv444/VsGFDTZs2zek4wsLC9M8//5T5nslk0qBBg/TKK6+offv2TvcBAAAAAAAAAAACC8kwPxYaGqoOHTqoa9eumj9/vk6ePOmRfkaNGlXqmWTR0dH68MMPdfXVV5eq/9xzz+m5557T5MmTHcqnT5+uSy+9VJdffrnbY+zXr58eeOABtWvXzu1tAwAAAAAAAAAA/8UxiX5g7NixevPNN9WuXTt17drV/urUqZNCQ0MlSXFxcdq7d6/Dfe741S5ZskSDBg1yKAsNDdVPP/2krl27Vnjv9OnTNXbsWIeyVq1a6bffflNISPXzsFdffbXy8/MlSf/8848OHz6snTt3qqioyF6nZ8+e+uSTT9S8efNqtw8AAAAAAAAAAAJPQCbDJk+ebN/JZDKZNHv2bB9H5JpDhw6pdu3aCg8PL7eOp5JhF110kVavXu1Q9uyzz2r8+PFVun/QoEH253nZvP/++xo2bJjLsUnFRzi+++67evrpp5WbmytJio2N1fr169WwYUO39AEAAAAAAAAAAPxXQCbD4uPjtXnzZlmtVplMJlksFl+H5HGeSIZt27ZNHTp0cCirX7++Dhw4YN+RVpkNGzaU2kHWs2dPrVmzxqXYyuqnX79+ysnJkSTddtttmjt3rlv7AAAAAAAAAAAA/ifI1wF4SgDm+Lzuk08+KVU2fPjwKifCJKlLly7q0qWLQ9natWu1Z88el+Mr2c/pu9U++eQTHT9+3K19AAAAAAAAAAAA/xOwyTCTyeTrEPze4sWLS5XdeOON1W6nrHvKattVQ4YMsf9cWFio1NRUt/cBAAAAAAAAAAD8S8Amw+Aas9mstLQ0h7KIiAglJCRUu60+ffqUKiv5HDJ3aNasmcP133//7fY+AAAAAAAAAACAfyEZhjJt2rRJRUVFDmVdu3ZVSEhItdvq1q2batSo4VC2YcMGl+IrS2ZmpsN17dq13d4HAAAAAAAAAADwLyTDUKbff/+9VFmrVq2cais0NFRNmzZ1KNu9e7cKCwudaq88JXebtWzZ0q3tAwAAAAAAAAAA/0MyDGVKT08vVda8eXOn24uNjXW4tlgsysjIcLq9kvLz8/XMM8/Yr1u2bKk2bdq4rX0AAAAAAAAAAOCfqn/mHc4Ihw8fLlVW8plc1VHWvUeOHNE555xTZv0vvvhCGzdu1IMPPqiGDRtW2PbBgwc1fPhwbdy40V72xBNPOB2rzV9//aWjR49W656srCylpqYqJiZGtWvXVrNmzVSzZk2XYwEAAAAAAAAAwJ/9888/2rdvn/26b9++XnvcEckwlOn48eOlyqKiopxur6x7jx07Vm79rKwsPfPMM3r++efVp08fXXDBBerQoYPq16+v8PBwZWdn688//9Tq1au1cOFC5eXl2e+99tprdeeddzodq82MGTM0ZcoUl9sBAAAAAAAAAACOvvrqK11zzTVe6YtkGMpkNptLlYWHhzvdXln35ubmVnqfxWLRihUrtGLFikrrmkwmjRgxQm+++aZMJpMzYQIAAAAAAAAAgADDM8NQpoKCglJlYWFhTrdXVjIsPz+/3Pp9+vTR6NGjq/Tcr5o1ayoxMVGrVq3SO++8oxo1ajgdJwAAAAAAAAAACCwBuzPMarX6OoSA48puq7Lureh31LJlS02fPl1S8ZGNmzdv1p9//qm///5b+fn5ioqKUp06dXTeeefp/PPPdylRV5777rtPiYmJ1bpn+/btGjJkiP36iSeeUJMmTdSxY0eXdtYhcOTl5WnLli32a9ZG9QT6/PnT+IwWq6/i8Va/nuzHE20bbX3AOFgbrgn0+fO38RkpXj4HjdW+kdYGjIf14bxAnzt/G5+R4vVlLIHwWcjnILxp+/btDo84atasmdf6Dshk2D333KPDhw/7Ogy/VtbuqtOfy1VdZd0bGhpapXvr1q2rfv36qV+/fk7374yGDRuqYcOGLrXRpEkTxcbGKiEhQTExMW6KDP4sKytLmZmZ9mvWRvUE+vz50/iMFquv4vFWv57sxxNtG219wDhYG64J9Pnzt/EZKV4+B43VvpHWBoyH9eG8QJ87fxufkeL1ZSyB8FnI5yB8qWbNml7rKyCTYXfffbevQ/B7ERERpcrcnQyLjIx0uj0AAAAAAAAAAICqCMhkGFxXr169UmU5OTlOt1fWvWX1EajMZrOvQ4BBlFwLrI3qCfT586fxGS1WX8XjrX492Y8n2jba+oBxsDZcE+jz52/jM1K8fA4aq30jrQ0YD+vDeYE+d/42PiPF68tYAuGzkM9BeJMrG25cZbLycK2AEBcXp7179zqUufKrnTBhgp599lmHsqeeekpPPvmkU+31799fK1ascCjbvXu3zjnnHGdD9KmUlBSlpKSUKjebzUpNTbVfJycnKzY21ouRAQAAAAAAAABgPBkZGRo9erT9euvWrWrfvr1X+mZnmKS0tDSHnUsXXXSRD6MxhhYtWpQqK5lsq46MjAyH6+DgYL9OEqWnp2vlypW+DgMAAAAAAAAAAFTC75Jh69at088//6xff/1Ve/fu1bFjx5SXl6fQ0FBFRUWpSZMmat26teLj43XxxRerQYMGlbZ51113afPmzZIkk8mkwsJCTw/D8Nq0aVOqbNeuXU61lZ+fr3379jmUtWzZUiEhfrf87OLi4tS3b99S5SV3hgEAAAAAAAAAAN/yi2xERkaGXn/9dc2bN0+HDx92eK/kUYAmk8nh5x49euiee+7R0KFDFRoaWm4fnBbpKD4+XkFBQSoqKrKXpaamqrCwsNpJrNTUVBUUFDiUJSQkuCVOX0lKSlJSUlKp8m3btqlDhw6lyrt3767IyEgvRAajM5vNWrdunf2atVE9gT5//jQ+o8Xqq3i81a8n+/FE20ZbHzAO1oZrAn3+/G18RoqXz0FjtW+ktQHjYX04L9Dnzt/GZ6R4qxKL1Wq1v9wpNzdXGzZssF936dJFERERbu3D0/24u21vzQl8w2Qy2V/OSEtLc3NEVWfoZFhWVpYmTpyomTNnqrCwsNx/rEwmk/290+tYrVatXbtWa9eu1aRJk/TCCy9oyJAhlbYBKTIyUvHx8Q7/cJnNZm3cuFHdunWrVls//vhjqbIz7SjKyMhIxcTE+DoMGBBrwzWBPn/+ND6jxeqreLzVryf78UTbRlsfMA7WhmsCff78bXxGipfPQWO1b6S1AeNhfTgv0OfO38ZnpHhtsRQVFSknJ0dZWVnKycnxyHe/FovF4WSyEydOKCsry6/6cXfb3poT+I7JZFJUVJRiYmIUFRWloKCgKt8bHh7uwcgqVvUovWzt2rXq1KmTXn/9dRUUFMhqtTpkHUtmIMt7z5bxT09P180336zrr79eJ06c8PHo/MNll11WqmzBggXVbqese8pqGwAAAAAAAABcVVRUpH379unAgQPKzs5mEwTgRlarVdnZ2Tpw4ID27dvncLqckRkyGfbZZ59pwIAB2rt3r0MSzOb0ba3lvWxKJsYWLlyo+Ph4bd++3RdD8ys33XRTqbI5c+YoPz+/ym1s3LhR69evdyjr0aOHWrRo4XJ8AAAAAAAAAHA6WyIsNzfX430FBQUpOjra/qrODhmj9OPutr01JzCG3Nxcv0mIGe6YxK+++kq33HKLLBZLqQSYJEVFRalXr17q3bu3zj77bNWtW1e1atVSTk6OMjMztXv3bm3cuFG//PKLjh49KkkOu8esVqsyMjJ04YUX6uuvv9aFF17o/UH6iQ4dOujCCy90OObw6NGjeu211zRu3LgqtfHEE0+UKrv33nvdFiMAAAAAAAAA2OTl5XklEQagWG5urnJycgxzVGp5DJUM27JlS7mJsB49eujhhx/Wddddp+Dg4ErbKioq0ooVK/TRRx/po48+Un5+vsMOs5MnT+rKK6/Ud999Z+8DpU2YMKHUkYaTJk3SwIEDlZCQUOG9b7zxhn1+bc455xzdcsstbo/T6Mxms69DgEGUXAusjeoJ9Pnzp/EZLVZfxeOtfj3ZjyfaNtr6gHGwNlwT6PPnb+MzUrx8DhqrfSOtDRgP68N5gT53/jY+I8Vbsu/MzEz798u2V4MGDRQVFeXwnbM7FBUVOSTeIiIiPLITypP9uLttb80JfMNqtSonJ0dHjx51OKnv77//rtL9eXl5Ho6wfCarQbJABQUF6tSpk37//Xf7P0pWq1W1a9fWO++8oxtvvNHptvfv36+nn35as2bNcii3Wq2qU6eOQkNDdeTIEUnFu8csFovzA/GRuLg47d2716HMXb/aa6+9VgsXLnQoi4mJ0YcffqirrrqqVP2CggK98MILmjhxYqn3Fi1apCuvvNItcflSSkqKUlJSSpWbzWalpqbar5OTkxUbG+vFyAAAAAAAAIAzV4MGDWQymRQREaHg4GDVrl1bUVFRvg4LCCg5OTk6efKkLBaLcnNzZbVa7Sf1VSQjI0OjR4+2X2/dulXt27f3ZKh2htkZ9tprr9kTYbbnhLVv317ffPONy8mEpk2b6u2339Ytt9yiO++8U3v27LH/XwEnTpxweKaYUV1xxRU6ePBgue+X9V7nzp0rbPPbb7/VWWedVWnf7777rjZs2KD9+/fby7KysnT11Vera9euuuaaa9SiRQvl5eXpjz/+0EcffaQDBw6UaueBBx4IiESYJKWnp2vlypW+DgMAAAAAAADA/zv9ZDDbbqSwsDBfhgQEJNvfle3vzB9yLIZIhuXl5emll15y2KYaGxur77//Xk2aNHFbP3379lVaWpquuuoq/fjjjw6/IHdvkXW37du3l9r5VZlff/21wvfz8/Or1E6DBg30/fffa8CAATp8+LDDe6mpqQ47ocozZMgQTZs2rUr9+YO4uDj17du3VHnJnWEAAAAAAAAAvM/2fa/Rv/cF/JE//n0ZIhn28ccf69ixY/bEVHBwsL788ku3JsJsatWqpSVLlujGG2/UN9984/B/C6B85513ntatW6dbbrlFP/74Y5Xvq1GjhsaPH6+JEycG1NmwSUlJSkpKKlW+bds2dejQoVR59+7dFRkZ6YXIYHRms1nr1q2zX7M2qifQ58+fxme0WH0Vj7f69WQ/nmjbaOsDxsHacE2gz5+/jc9I8fI5aKz2jbQ2YDysD+cF+tz52/iMFG/JWCIjIxUUFGT/LjIqKkohIZ75Gtx2RJyN7WhGf+rH3W17a07gW4WFhfa/sejoaElS27ZtK/1dp6WleTy28hgiGTZ//nxJsu/QuuOOOyo94s8VNWvW1Pz583XhhRdq06ZNHusn0DRr1kyrVq3SZ599punTp2vNmjXlbnuMiopSYmKiHnvsMbVt29bLkRpPZGSkYmJifB0GDIi14ZpAnz9/Gp/RYvVVPN7q15P9eKJto60PGAdrwzWBPn/+Nj4jxcvnoLHaN9LagPGwPpwX6HPnb+MzUrxBQUEOX8gHBwd7LRnjrb482Y+72/bm/MN7Tj9tz/b7jY6OrjTxHB4e7vHYyuPzZFhhYaFWr17tcJ7khAkTPN5veHi4vv76a51//vk6efKkx/tzVXp6uq9DkFS87XHIkCEaMmSI/vrrL61bt05//vmnsrKyFBISovr16+u8885Tt27dFBoa6utwAQAAAAAAAADAGc7nybDNmzcrLy/PnkVs166d4uLivNL32WefrZdffll33XWXV/oLNA0bNtTgwYN9HQYAAAAAAAAAGNK+fftkMpnUtGlTX4cCnNF8ngzbvXu3/WeTyaRBgwZ5tf/hw4crPDxc//zzj1f7BQAAAAAAAAAEthdeeEEmk0lvvPGGr0MBzmg+T4YdOnRI0v/OmGzWrJnXY7jpppu83icAAAAAAAAAIHDt27dPs2bNkiQ9/vjj7A4DfMjnyTCz2exw3ahRIx9FAnhOyXWOM1fJtcDaqJ5Anz9/Gp/RYvVVPN7q15P9eKJto60PGAdrwzWBPn/+Nj4jxcvnoLHaN9LagPGwPpwX6HPnb+MzUrwl+y4qKpIkBQUFSZIsFov9ET3uZrFYKrx+/vnnlZ+fb/85OTnZI/24wt1tezJWGIfFYpHVapX0v7+57OxsBQcHV3hfXl6ex2Mrj8lqi9hHXnjhBY0fP744GJNJc+fO1S233OLLkIBKpaSkKCUlpVS52WxWamqq/To5OVmxsbFejAwAAAAAAAA4M5lMJjVo0ECSFB0dLUlq0qRJpV/Qe8L+/fvVpUsXezIsNDRUaWlpOvvss70eC+BuFovFfupfdna2JOno0aOqLN2UkZGh0aNH26+3bt2q9u3bey7Q0/h8Z1hkZKTD9ZEjR3wUCVB16enpWrlypa/DAAAAAAAAAGBA06ZNsyfCJCk/P1/Tpk3TSy+95MOogDNXkK8DsGXCbVtVMzIyvNp/UVGRXnzxRT311FP2F1CZuLg49e3bt9Sra9euvg4NAAAAAAAAgA/t379fc+fOLVX+wQcf6MCBAz6IyDUnT57U3LlzNXz4cPXu3VstWrRQ48aN1bFjR40YMULr168v997zzz9fderU0bx588qtc99996lOnTq67777Sr03ePBg1alTRy+88IIKCgr0xhtvqH///mrevLnq1KmjH3/80aH+jz/+qKSkJLVr106NGjVSy5Ytdc011+ijjz4q98jG6vThylxUV0FBgd566y1ddNFFio2NVf369dWqVSslJSVp165dbuvnTOHznWHnnnuu/Wer1arvv//eq/1Pnz5djz/+uMO5sRMnTvRqDPA/SUlJSkpKKlW+bds2dejQoVR59+7dS+2CxJnJbDZr3bp19mvWRvUE+vz50/iMFquv4vFWv57sxxNtG219wDhYG64J9Pnzt/EZKV4+B43VvpHWBoyH9eG8QJ87fxufkeItGUtkZKSCgoLszwyLiopSSIhnvga3WCzKzc21X0dERCg4OFgzZsxw2BVmk5+frxkzZlT72WHl9eMOVWn71Vdf1dNPPy1JCg4OVkxMjKTipN/+/fv1xRdf6NVXX9WDDz5Yqj3b7yEsLMx+dGVJNWrUsP+3ZB1bLEVFRbrmmmu0Zs0ahYSEKDo6WiaTSeHh4fZ7Hn74YU2fPl1S8eabWrVqKTMzU6tWrdKqVav0+eef64svvnCpj+rMhSt27typm266SZs3b5YkxcTEKCQkRMeOHdPChQu1YsUKrVmzRq1bt3apH2cVFhbaf7e2uWnbtm2l6zItLc3jsZXH58mw9u3bKyoqyv6gw99//127du1Sq1atPN73H3/8oSeffFImk8l+lqWnHqaIM1tkZKT9H0bgdKwN1wT6/PnT+IwWq6/i8Va/nuzHE20bbX3AOFgbrgn0+fO38RkpXj4HjdW+kdYGjIf14bxAnzt/G5+R4g0KCnL4Qj44ONhrzwwLDg7WwYMHNXv27HLrzJo1S0888YSaNm3qUj+eGlNZbTdt2lSTJk3SVVddpY4dOyo0NFRWq1Xp6emaPn26kpOT9cgjj6hv3746//zzy2y35O/ldLbv5E0mU6k6tvdmzpwpSZozZ46GDh2q8PBwHTt2zH7PG2+8YU+EjRo1SlOmTFHjxo1lNpv17rvv6tFHH9Xy5ct1zz336JNPPnGqj+rORXx8fNUmvYQdO3aoT58+OnbsmG644QY999xzat26tQoLCzVv3jyNGDFCmZmZevzxx7Vw4UKn+nCV1Wq1z5ttbqKjoytNPIeHh3s8tvL4/JjEoKAgDRgwwOHBas8884zH+83MzNTVV19tz1KTBAMAAAAAAAAAuOKFF14oc1eYTX5+vl544QUvRuS6UaNGafLkyerSpYtCQ0MlFX+f3qJFC02bNk333XefLBaL3nzzTY/FkJOTo3nz5ikpKcmeUKlXr57q1q2rvLw8TZo0SZJ088036+2331bjxo0lFSdqx44dq1dffVWS9Omnn2rDhg3V7sPG03NRUFCgxMREHTt2TKNGjdKCBQvsu79CQkI0bNgwjRkzRpL07bffKi8vz6l+zkQ+T4ZJ0k033SRJ9h1aH374oVJTUz3WX25urq699lrt2LHDYVcYAAAAAAAAAADO2Ldvn2bNmlVpvXfffVf79+/3QkTeceWVV0pSqed3uVP79u111VVXlfnekiVLdPz4cUnS5MmTy6xz3333qUmTJpJU7vPLKuqjqlydizlz5mjLli2Ki4sr9zjNwYMHSyo+qjA9Pd2pfs5EhkiG3XDDDTrrrLMkFSfEioqKdP3113vkYYLHjh1T//79tWrVKoftlwAAAAAAAAAAOOvFF1+scFeYjT/uDvvzzz/1yCOPqEuXLqpdu7aCg4NlMplkMpl0xRVXSJJHE3wXXHBBue/ZNtY0a9as3GdoBQcHa8CAAQ71q9PH6Tw5F2+99ZYkacyYMapZs2aZdU4/kpSNPlVniGRYjRo1NGHCBIfndu3fv1+DBg1SRkaG2/pZtmyZEhISlJqa6rBIWDAAAAAAAAAAAGft37+/wmeFleRPu8O+/PJLtWvXTq+88orS0tKUmZmpqKgoNWzYUI0aNVKdOnUkSWaz2WMxNGzYsNz3/vrrL0nS2WefXWEbtue02epXpw8bT87FwYMHtXHjRknSNddcU269w4cP239u1qxZtfs5UxkiGSZJd999t7p162a/NplM+u2339SpUyfNnz/fpbb379+vUaNGadCgQdq3b5/Dw93q1aunxo0bkxADAAAAAAAAADhl2rRpVdoVZuMvu8OOHTumpKQk/fPPPxowYIBWrFih3NxcZWZm6siRIzp8+LA+++wzj8cRHBzs8z48PRc//fSTJKlu3bpq0aJFufVsO9tat26t6Ohop/s704T4OgAbk8mkTz75RF26dFFmZqa9LDMzUzfffLNeffVVPfLII7r++usVFFR5Ds9qtWrFihX66KOP9OGHH6qgoMAhCWa1WlWnTh19//33Gj58uEM2FXA3T/5fEfAvJdcCa6N6An3+/Gl8RovVV/F4q19P9uOJto22PmAcrA3XBPr8+dv4jBQvn4PGat9IawPGw/pwXqDPnb+Nz0jxluy7qKhIkuzfIVssFo89JsdisUgq3owxd+7cat//7rvv6tFHH7XvWKqsn/KuXVFZ24sWLVJWVpbq1Kmjr776ShEREaXqHTx4sNz7bQmm3NzccuM+efKkpOLv7EvWsW1iKSoqKvf++vXrSyr+PVQ0N/v27ZMkNWjQwKFeVfqQXJ+Lyqxfv16S1KRJkwrvXbhwoSTpsssus9fLzMzUueeeq9jYWK1fv96+5nNycjRgwADt379fq1ev1pQpU/Tpp5/q5MmTCg8Pd2j3/fff11133aXFixfrkksuqTBWi8XiMG+SlJ2dXWlCMS8vr8L3PckwyTBJatGihb7++mtdeumlOnXqlKTihJjVatW6des0dOhQRUVFqVevXrrgggt09tlnq27duoqJiZHZbFZmZqZ2796ttLQ0rV27Vn///bckORy/aLtu1KiR/vvf/6pz584O/QBVkZKSopSUlFLl5X3wr1u3zsMRwV+xNlwT6PPnT+MzWqy+isdb/XqyH0+0bbT1AeNgbbgm0OfP38ZnpHj5HDRW+0ZaGzAe1ofzAn3u/G18RorX9v2cbcdMTk6Ox3cVVXdXmE1+fr6eeeYZvfTSS9W6Lzc3t9p9Odv2rl27JEmtWrWSxWJRdnZ2qXsWL15c7v21atWSJO3evbvMe4uKiuxJoIKCglJ1bMme/Pz8Mu+XpHbt2kkqToZt3LhRrVq1KlXHYrFo+fLlkqROnTo5tFWVPqTqz0VFbZXFtuPr5MmT5d67evVqbdiwQSaTSTfffLO9XlBQkMaMGaNJkybp448/1lVXXaXCwkLddNNN2rlzp77++ms1bNhQnTp10rx58/TTTz+pR48e9nbNZrMmTJigQYMGqUePHpXGbrFYHJJgttgqy7G487FY1WWoZJgkXXjhhVq8eLGuvfZae0bYlqiyWq3Kzs7WkiVLtGTJkgrbOX3ST8/8W61WtW/fXosWLVLz5s09MgYEvvT0dK1cudLXYQAAAAAAAADwIWd3hdl88MEHGjt2bKXPu/KVmJgYScWJoFOnTiksLMzh/S1btmjBggXl3t+hQwdt3LhR33zzjSZMmFBql97HH3/ssJvKGf3791fdunV1/PhxvfDCC5o1a1apOnPmzNGhQ4ckSTfccINT/bg6F5X59ddfJUkHDhzQ9u3b7Uk+m7///lujR4+WJN1yyy1q27atw/sjR47UW2+9palTp+rKK6/UmDFjtHLlSn3yySeKj4+XJHXp0kWStGnTJodkWHJyso4ePaqnnnrK6fiNzjDPDDtdnz599Msvv6hr164Ou7psL1tirKLX6fUl2cvvvfderV+/nkQYXBIXF6e+ffuWenXt2tXXoQEAAAAAAADwEmd3hdnk5+dr2rRp7gvIzQYMGKCgoCCdOHFCo0aNsieu8vPz9eWXX+r6669XVFRUuffbEk87duzQ2LFjdfz4cUlSVlaWZsyYoYceekh16tRxKcbw8HCNGzdOkvT555/rX//6l/766y9JxTvV3n77bY0fP16SdN1119lPi6suV+eiIhkZGfa5iYmJ0ahRo/T7779LkgoLC/Xdd99p0KBBSk9PV5s2bfTss8+WaiM8PFyPPvqotm3bpuuuu07z5s3T66+/rosvvthep2PHjqpZs6Y2btxoLzt48KDeeOMN3XHHHWrTpo1T8fsDk9XAZwNaLBa9+eabevrpp3Xs2DFJqvb5rrbhde/eXa+88oouuOCCUnXi4+O1efNmexLNnWeu4syybds2dejQwX6dnJys2NhYde/eXZGRkT6MDEZhNpsdjg5gbVRPoM+fP43PaLH6Kh5v9evJfjzRttHWB4yDteGaQJ8/fxufkeLlc9BY7RtpbcB4WB/OC/S587fxGSne02MxmUyKi4tTUFCQ/ZlhLVu2VEiIZw5IS09PV7t27VxKhklSaGiodu7cWe6zwywWi8PxgxEREW47+rEqbT/xxBMORznWqlVLubm5KigoUIsWLfTUU0/p9ttvlyT9888/pdq766679OGHH9rLateuraysLBUVFemBBx5QVlaWPvjgAw0bNkzvvfeeQ98DBgzQqlWr9OSTT2rSpEkVjuXhhx/W9OnTJRWvhdq1ays7O1uFhYWSpH79+unLL7+0H6HpTB/VmQtbv1Xx1Vdf6cYbb1Tjxo319NNPa+TIkZKK5yovL0///POPpOKdXV9++aXOOuusMtspLCxU8+bNdeTIET399NN64oknStW54IILlJmZqa1bt0qShg8froULF2rHjh1q0KBBleItLCzU7t27Jf3vmWFnn312pesyLS1N/fv3t19v3bpV7du3r1KfrjLcMYmnCw4O1ujRozVy5Eh98MEH+vDDD7VmzRr75FYmKipKV155pUaNGuUwwYC3RUZG2rfRAqdjbbgm0OfPn8ZntFh9FY+3+vVkP55o22jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBRvUFCQwxfywcHBHntmWOPGjbVt2zb7dVRUlNN9RUdHV/leT46prLZffPFFdezYUW+88Ya2bNmigoICtWrVStddd50ee+wxh11GJe8NDg7W+++/r27dumnOnDnasWOHioqKdMEFF+jBBx9UYmKikpKSJBUnsEreb9scU/L3WpZp06bpmmuu0ZtvvqmffvpJx44dU3R0tDp37qzbb79dw4YNK7ON6vThylxUxHZfQkKCRowYoVq1aumVV17R9u3bVaNGDcXHx2vYsGEaOXJkhcndN954Q0eOHJEk1alTp8wYevXqpeTkZOXm5uqPP/7Qhx9+qOeff16NGzeucry2jUWnjzM6OrrSxHN4eHiV+3A3QyfDbMLDw3X33Xfr7rvv1rFjx7R27Vpt2rRJ6enp+uuvv5SXl6egoCBFRUWpUaNGatOmjeLj49WrV68qZf1tRygCAAAAAAAAAFAVYWFhql+/vv26Ogktf3P77bfbdzyV1K9fP/v362WduhYUFKTRo0fbn3dVUkpKilJSUsp8b8WKFdWKs3///tXeGFPdPqo6F9WRlpYmSfZneyUmJioxMbFabcyfP1//+te/9NBDD2n16tV65plnNHz4cEVERDjU69Gjh4qKipSWlqZJkyapefPmGjt2bLVj9jd+kQw7Xb169XTllVfqyiuvdFub//3vf13eygoAAAAAAAAAAFBdJZNh1bVixQoNGzZMQ4YM0csvv6zvvvtOl19+uaZPn17qqMSePXtKkiZOnKhVq1bp448/Vs2aNV0bgB8I8nUARtCkSRM1b97c/gIAAAAAAAAAAPC0AwcO2I82dCYZtmXLFl177bXq2bOn3n//fZlMJl122WXq3bu3XnzxRZ04ccKhflxcnBo2bKhVq1apR48eGjp0qFvGYXQkwwAAAAAAAAAAAHzAtiusVq1aatGiRbXu3bdvny6//HI1bdpUX331lcMOr6efflonT57U1KlTS93XrVs3SdKrr75qf/ZXoPO7YxIBAAAAAAAAAAACgS0Z1rlz52onppo1a6b9+/eX+d6AAQPKfH5ZTk6OfvnlFyUmJqp3797VD9hPsTMMAAAAAAAAAADAByZNmiSr1aoVK1Z4pb/JkycrJyenzB1jgYydYQAAAAAAAAAAAAHq+PHj+u6777R+/XpNmzZNL730UrWPZPR3JMMALzCbzb4OAQZRci2wNqon0OfPn8ZntFh9FY+3+vVkP55o22jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBRvyb6LiookSUFBxYeiWSwWjz0TyWKxVHjtD/24u21vzQmq57vvvtMtt9yixo0ba8KECRo7dqxLvxuLxWI/gtH2N5edna3g4OAK78vLy3O6T1eZrGUdGgmgQikpKUpJSSlVbjablZqaar9OTk5WbGysFyMDAAAAAAAAzkwmk0kNGjSQJEVHR0uSmjRpUukX9ACqx2Kx6NChQ5KKk2CSdPTo0TKfUXa6jIwMjR492n69detWtW/f3nOBnoadYYAT0tPTtXLlSl+HAQAAAAAAAAAAKkEyDHBCXFyc+vbtW6q85M4wAAAAAAAAAADgWyTDACckJSUpKSmpVPm2bdvUoUOHUuXdu3dXZGSkFyKD0ZnNZq1bt85+zdqonkCfP38an9Fi9VU83urXk/14om2jrQ8YB2vDNYE+f/42PiPFy+egsdo30tqA8bA+nBfoc+dv4zNSvCVjiYyMVFBQkP2ZYVFRUQoJ8czX4BaLRbm5ufbriIgIjxzJ6Ml+3N22t+YEvlVYWGj/G7MdSdq2bdtKf9dpaWkej608JMMAL4iMjFRMTIyvw4ABsTZcE+jz50/jM1qsvorHW/16sh9PtG209QHjYG24JtDnz9/GZ6R4+Rw0VvtGWhswHtaH8wJ97vxtfEaKNygoyOEL+eDgYK8lY7zVlyf7cXfb3px/eI/VapXJZJIk++83Ojq60sRzeHi4x2MrT5DPegYAAAAAAAAAAAA8jGQYAAAAAAAAAAAAAhbJMAAAAAAAAAAAAAQskmEAAAAAAAAAAAAIWCTDAAAAAAAAAAAAELBIhgEAAAAAAAAAACBgkQwDAAAAAAAAAABAwPKbZFhhYaGvQwAAAAAAAAAAAICf8ZtkWLNmzfTkk08qIyPD16EAAAAAAAAAAADAT/hNMuzIkSN67rnn1LJlS11zzTVavHixr0MCAAAAAAAAAACAwflNMszGYrFo0aJFuvLKK3XOOefoxRdf1N9//+3rsAAAAAAAAAAAAGBAIb4OoLpMJpOsVqskKT09XU888YQmTpyoG264Qffcc4/69Onj4wiB0sxms69DgEGUXAusjeoJ9Pnzp/EZLVZfxeOtfj3ZjyfaNtr6gHGwNlwT6PPnb+MzUrx8DhqrfSOtDRgP68N5gT53/jY+I8Vbsu+ioiJJUlBQ8T4Qi8Uik8nkkb4tFkuF1/7Qj7vb9tacwLcsFos9T2P7m8vOzlZwcHCF9+Xl5Xk8tvKYrLaIDa5z587avHmzJDn842UL31bWrl073Xvvvbr99tsVHR3t/UBxRkhJSVFKSkqpcrPZrNTUVPt1cnKyYmNjvRgZAAAAAAAAcGYymUxq0KCBJNm/G27SpEmlX9B7NKb9+yWTSdazz/ZZDChmsVj01ltv6dNPP9Xu3buVm5srSfrwww915ZVX+jg6/2KxWHTo0CFJxUkwSTp69KgqSzdlZGRo9OjR9uutW7eqffv2ngv0NH6zM2zTpk1au3atZsyYoQULFujUqVMymUz2JJhtkrdt26YHH3xQ48aN06233qq7775b8fHxvgwdASg9PV0rV670dRgAAAAAAAAADCxs2jTJZFLeSy/5OpSANG/ePGVkZOjCCy/UhRdeWGHdJ554Qu+++64kKTQ0VA0bNpQk1axZ0+Nxwvf8JhkmST179lTPnj01bdo0zZkzR2+//bZ27dolqfRuMbPZrHfffVfvvvuuunXrpvvuu09Dhw5lYcMt4uLi1Ldv31LlJXeGAQAAAAAAADgzmfbvV+jcuZKkU2PHsjvMA+bNm6effvpJkipMhmVnZ9tP+poyZYoefPBBjx2fCWPyq2SYTd26dfXwww/r4Ycf1pIlSzRz5kwtWrRIhYWFZe4WW7dundavX6+HHnpISUlJuvvuu3Xuuef6cgjwc0lJSUpKSipVvm3bNnXo0KFUeffu3RUZGemFyGB0ZrNZ69ats1+zNqon0OfPn8ZntFh9FY+3+vVkP55o22jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBRvyVgiIyMVFBRkf2ZYVFSUQkI88zW4xWKxH7UnSREREQ5HMppmzJApP1+SFD1jhqzJyR7pxxXubtuTsZbF1nZoaGiFj036/fffVVBQIEkaM2aMoqKiPBbTmaCwsND+N2ab97Zt21b6u05LS/N4bOXxy2TY6QYOHKiBAwfq0KFDeueddzRr1iwdOHBAkhySYlarVcePH9drr72m1157TQMGDNC9996ra665xqdnxuLMEBkZqZiYGF+HAQNibbgm0OfPn8ZntFh9FY+3+vVkP55o22jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBRvUFCQw/e9wcHBXvv+16Gvffuk2bP/F9esWdITT0hNm7q3Hzdzd9uenn9bDqDk772kf/75x/5zrVq1PBbPmcJqtdrn3jbv0dHRlSaew8PDPR5beYJ81rObNWnSRJMmTdLevXv1+eefa9CgQZL+90uxvWyJsWXLlikxMVGxsbGaPHmyPYEGAAAAAAAAAIBLXnhB+v9dYZKKf37hBd/F4wbp6ekaO3as2rdvr6ioKEVERKht27YaM2aMMjIyyrxnwIABMplMmjx5sgoLC/Xaa68pPj5eUVFRatiwoa699lr9+uuv9vq5ubl65pln1KFDB0VGRqpevXoaOnSodu/e7dBuSkqKTCaTVq5cKan46MPT8wAmk0np6en2ev369bPfe3qd08urq6CgQNOnT1d8fLxiYmIUEhKiBg0aKDExUTt37nS6XXhGwCTDbIKCgnTddddp8eLF2rlzpx5++GHVrVvXngQrmRQ7dOiQnn76abVo0ULXX3+9lixZ4ushAAAAAAAAAAD81b590qxZpcvffVfav9/78bjBRx99pLZt22r69Onavn27CgsLJUk7duxQcnKyOnTooO+//77c+wsKCnTZZZfpoYce0vbt2yVJR48e1cKFC3XhhRcqNTVVx44d04UXXqgnn3xSu3fvtp/2Nn/+fPXu3dsh4RYeHq5GjRqpRo0akop3JzZq1MjhFRwcbK9Xp04d+72n16lbt65T87Fz50517dpVY8eO1aZNm2QymRQSEqK///5bCxYsUPfu3UmIGUzAJcNO17JlS7300ks6cOCAPvjgA/Xu3btUUsyWGCssLNTChQt12WWX6dxzz9XLL7+sY8eO+XoIAAAAAAAAAAB/UnJXmI2f7g5bsmSJhg0bJovFoscee0x79uxRXl6ezGazfv/9dyUmJio7O1uJiYnl7hCbMWOGNm3apM8++0w5OTnKzs7WunXrdM455ygnJ0djxozRyJEjdeLECX333Xcym83KycnRDz/8oAYNGuivv/7S+PHj7e0NHTpUhw8fVu/evSVJjzzyiA4fPuzwatasmb3eF198Yb/39Dqnl1fVjh071Lt3b23evFk33HCDduzYoczMTOXk5Oj9999XjRo1lJmZqUcffbTabcNzAjoZZhMaGqrbbrtNP/74ozZt2qR7773X4QF5JXeL7d69W+PGjVNsbKxGjRqlbdu2+TB6AAAAAAAAAIBfKG9XmI2f7Q4rKirS/fffr6KiIr355puaOnWq4uLi7N+pt2nTRvPnz9fVV1+trKwsTZs2rcx2Tp48qa+++ko33nijatSoIZPJpG7duundd9+VJP38889avHixlixZokGDBikoKEhBQUG6+OKL9cL/JxC/+OILFRQUeGvoZSooKFBiYqKOHTumUaNGacGCBWrdurUkKSQkRMOGDdOYMWMkSd9++63y8vJ8GS5Oc0Ykw053/vnn67rrrlPPnj1ltVolyf7fkrvF8vLyNHv2bHXq1Em333679u7d68vQAQAAAAAAAABGVt6uMBs/2x22atUq/fHHH6pfv75GjBhRbr1hw4ZJUrlHJV544YW68MILS5X37dtXNWvWlCTdeOONatWqVak6l156qSQpLy9Pf/zxR7XH4E5z5szRli1bFBcXp+Tk5DLrDB48WJJUWFio9PR0L0aHioT4OgBvOXHihObMmaO3335bu3btcnjPZDJJKp0Us5VZrVbNmzdPX3/9tV5//XX7HzYAAAAAAAAAAJIq3xVm8+670uOPS02bej4mF/3000+SpMzMTJ111lnl1sv//wRgeRtKunfvXmZ5cHCw6tevrwMHDqhbt25l1mnUqJH95xMnTlQpbk956623JEljxoyxJ/FKiomJsf9syznA9wI+GbZ27VrNnDlTCxYs0KlTpxwW3+kJL5PJpEsuuURdu3bVRx99pH379pWqk52dreHDhys7O1v333+/9wcDAAAAAAAAADAk04svVrwrzMa2O+yNNzwflIsOHjwoqfh4wCNHjlRav7xjAaOjo8u9JyQkpMI6tvdtcfjKwYMHtXHjRknSNddcU269w4cP239u1qyZx+NC1QTkMYlms1nvvPOO4uPjdcEFF+jDDz9UXl6ePel1+lGI0dHReuCBB7R9+3Z9//33eu6557Rnzx4tXLhQl1xySandYlarVY888oh2797t41ECAAAAAAAAAIzAtH+/TLNnV/0GP3l2mMVikST16NHDfopaRa/CwkIfR+w5tl1ydevWVYsWLcqtl5qaKklq3bp1hUlAeFdAJcO2bt2q+++/X2eddZbuvfde/frrr/Y/wtOTWVarVeedd57efPNNHThwQMnJyWrTpo29naCgIF111VX6/vvv9csvv6hr164OO8ry8/Pt2yEBAAAAAAAAAGe2sGnTZKrKrjAbP3l2WOPGjSWVf/zhmWTDhg2SpCZNmlRYb+HChZKkK664wl6WmZmpevXqKT4+3iHXkJOToy5duqhRo0bavXu3brvtNoWEhJS5wy4lJUUmk0k//PCDO4ZzxvH7ZFhBQYE++ugj9enTR506ddJbb72l7OzsMneBBQUF6brrrtPSpUu1detW3XvvvYqMjKyw/W7duunnn3/WZZddZm/TarVq2bJlXhohAAAAAAAAAMCoTPv3K3Tu3Orf6Ae7wy644AJJxUf/2XY8GUlQUHGKwxvP5kpLS5MkZWVllVtn+fLl2rBhg0wmk0aOHGkvr1Wrlh5//HFt2rRJX375pSSpsLBQN954o3bu3KlvvvlGLVu2VI8ePWSxWOzHMdqYzWb9+9//1pVXXqlLLrnEA6MLfH6bDPvzzz81btw4nX322Ro2bJh+/vnncneB1a9fX+PHj9eePXv0+eefq3///tXqKzg4WK+99ppDGcckAgAAAAAAAACqvSvMxg92h/Xv31+tWrWSJP3rX/9SfiXjPH78uDfCsouJiZEknTx50uN92ZJh+/bt09atW0u9f/ToUY0YMUKSlJSUpHbt2jm8/8ADD+iss87SlClTVFRUpJEjR2rp0qVasGCBunbtKqn4OEpJpRKPL774ov766y+99NJLbh/XmcKvkmFWq1ULFy7UZZddptatW+vll1/W33//XeZzvaxWq7p3764PPvhA+/bt0zPPPKOmTZs63XebNm1Ur149+3VOTo7L4wEAAAAAAAAA+C+nd4XZGHx3WEhIiN566y2FhIToxx9/1EUXXaSlS5eqoKDAXufPP//UW2+9pW7dumnmzJleja9Dhw6SpG+//VYHDhzwWD979+7VsWPHJBXv8rr11lu1fft2ScU7vL755hv16tVLf/75p84777xSm2skKTw8XBMnTtTmzZs1cOBApaSkaPbs2br00kvtdTp37qyaNWs6JMMOHDigl19+WaNGjdJ5553nsTEGOr9Jhj311FNq3ry5rr/+ei1ZskRFRUUOu8Ck4mRZzZo1dccdd2jdunVau3atbrvtNoWGhrolhrPOOsv+sze2XQIAAAAAAAAAjMvpXWE2frA77OKLL9Znn32m6Oho/fLLL7rkkksUGRmp+vXrKywsTC1bttS9996r1NRU+3f13nLHHXcoLCxMu3btUmxsrBo3bqy4uDjFxcVpvxuTjLZdYY0bN9arr76qzZs3q3379qpTp46ioqI0ePBg7d69W126dNEPP/ygWrVqldnOXXfdpUaNGmnZsmV69tlnNWzYMIf3Q0NDFR8fr/Xr19vLxo8fr5CQEE2ePNlt4zkT+U0ybPLkyTpw4EC5RyHGxsbq+eef1759+zRnzhz7tkJ3sp0/CgAAAAAAAAA4w+3b59quMBuD7w6TpGuvvVa7du3SpEmT1L17d0VFRenkyZOqWbOmOnXqpBEjRujLL7/UI4884tW4zj33XC1fvlxXX321GjRooGPHjmnv3r3au3evCgsL3dbPhg0bJEkJCQm68847NX/+fPvzvWrUqKGePXtqxowZWrt2rcOmmpLefPNNHTlyRJLKTZj17NlTO3fuVHZ2ttLS0jR37lyNHz9eDRo0cNt4zkQhvg6guk7fBSYVZ6UfeOABXXXVVR5PVtkSbwAAAAAAAACAM1yDBsrats1+GRUVpeDgYOfaio52U1Ce07BhQ02ePLnCHUoWi0X//POP/XrZsmWVzkl6enqlfVf0vXzPnj21cOHCCu/v16+fS9/t23aGxcfHS5ISExOVmJhYrTbmz5+vf/3rX3rooYe0evVqPfPMMxo+fLgiIiIc6vXo0UNFRUVKS0vTpEmT1Lx5c40dO9bp2FHM75JhVqtV0dHRuuOOO3T//ferTZs2Xut706ZNXusLgcVsNvs6BBhEybXA2qieQJ8/fxqf0WL1VTze6teT/XiibaOtDxgHa8M1gT5//jY+I8XL56Cx2jfS2oDxsD6cF+hz52/jM1K8JfsuKiqS9L9TviwWi8eO7rPUqCFr/fr/u46IkJxNhkmSxVJOsaXCa1e4u21PxupLtmRYp06dnBrTihUrNGzYMCUmJmrq1Kn67rvvNHjwYL322mt6/PHHHep269ZNkvTkk09q9erV+uijjxQSEmKoubRYLPbkou1vLjs7u9LEZ15ensdjK4/J6idbnYKCgnTeeefp/vvv17BhwxQVFeXrkHAGS0lJUUpKSqlys9ns8HDD5ORkxcbGejEyAAAAAAAA4MxkMpnsR8lF//9OqyZNmji/WwuQdPDgQbVv316StHHjRsXFxVXr/m3btumKK65Qx44d9fnnn6tmzZqSpEsvvVQ7duzQpk2bVLt2bYd7WrduraNHj6pr1676/vvvvf4stspYLBYdOnRIUnESTJKOHj1a6e67jIwMjR492n69detW+9x6mt/sDFu6dKn69+/v6zAAScVbd1euXOnrMAAAAAAAAAAAHvTrr79KkmJiYtS8efNq3bt//34NGTJEZ511lj766CN7IkyS/v3vf+uaa67RtGnTSh09GR8fr++//17PPPOM4RJh/spvkmEkwmAkcXFx6tu3b6nykjvDAAAAAAAAAAD+a/PmzZKkjh07Vjsx1bRpU2077blyp7vooot04sSJUuU5OTnasGGDrr32WvXo0aP6AaNMfnNM4lNPPWX/uXHjxho1apTb2n7nnXd0+PBh+/XEiRPd1jbOLNu2bVOHDh3s17ZjErt3767IyEgfRgajMJvNWrdunf2atVE9gT5//jQ+o8Xqq3i81a8n+/FE20ZbHzAO1oZrAn3+/G18RoqXz0FjtW+ktQHjYX04L9Dnzt/GZ6R4T4/FZDIpLi5OQUFB9meGtWzZUiEhntkTYrFYlJuba7+OiIjwyJGMnuzH3W17a04C2aOPPqqZM2dqy5YtatGiha/DKVNhYaF2794t6X/PDDv77LMr/V2npaU5bHzimMQyTJ482Z517dSpk1uTYTNnzrRndyWSYXC/yMhIxcTE+DoMGBBrwzWBPn/+ND6jxeqreLzVryf78UTbRlsfMA7WhmsCff78bXxGipfPQWO1b6S1AeNhfTgv0OfO38ZnpHiDgoIcvpAPDg72WjLGW315sh93t+3N+fdnx48f13fffaf169dr2rRpeumll9SqVStfh1Uuq9Vqz9fYfr/R0dGVJp7Dw8M9Hlt5/CYZZuOpjWy2djl/EwAAAAAAAAAAeMuSJUt0yy23qHHjxpo4caIefvhhX4cUcPwuGeYpJpPJY4k2AAAAAAAAAACAsgwdOlRDhw71dRgBLcjXAQAAAAAAAAAAAACeQjJMxQ/1s/HUwxQBAAAAAAAAAADgfSTDJGVmZtp/joqK8mEkAAAAAAAAAAAAcKczPhmWlZWl/fv3269r167tu2AAAAAAAAAAAADgVmd8Muy9996T1WqVJJlMJrVp08bHEQEAAAAAAAAAAMBdDPOArIyMjCrXzc/P1759++xJrOqwWCzKycnRn3/+qW+//VZz5syRyWSS1WqVyWRSfHx8tdsEAAAAAAAAAACAMRkmGRYXFyeTyVRhHVvy67ffflNcXJxb+rUlwWwSExPd0i4AAAAAAAAAAAB8zzDJMElV3unlzI6w8tgSYSaTSQMHDlTnzp3d1jYAAAAAAAAAAAB8y1DJsIp2hp2eAKtsB1l1Wa1WtW/fXnPmzHFruwAAAAAAAAAAAPAtQyXDfLEzrG3btrrzzjt1//33Kzw83G3tAgAAAAAAAAAAwPcMkwyraFeW1WrVnXfeKZPJJKvVqtjYWE2ZMsWpfkJCQhQdHa06deqoQ4cOqlOnjrMhAwAAAAAAAAAAwOAMkwy74447Knz/zjvvlFR8RGLdunUrrQ8AAAAAAAAAAAAYJhlWFe48HhEAAAAAAAAAAACBz2+SYafvBIuNjfVhJAAAAAAAAAAAAPAXfpMMq+iZYgAAAAAAAAAAAEBZgnwdAAAAAAAAAAAAAOApfrMzDAAAAAAAAAAAf5CWlqZZs2Zp06ZNysnJUVRUlDp37qwRI0YoISHB1+EBZxySYQAAAAAAAAAAuEFqaqoefPBBrV27ttR7a9as0cyZM9WrVy8lJyera9euPogQODNxTCIAAAAAAAAAAC5atGiR+vTpU2Yi7HRr1qxRnz59tGjRIi9FBsCnO8NWrVpVZvlFF11U5bqeUFb/AAAAAAAAAACUZePGjbrpppt06tSpKtU/deqUEhMTtXr1asPvEDtx4oS++OILfffdd/rtt9904MAB5ebmqlGjRrrgggs0evRo9ezZs8x7W7Zsqb1792rOnDlKSkoqs05SUpLef/993XHHHUpJSXF4r1+/flq5cqUmTZqkf//730pOTtbHH3+sXbt2KTMzU8uXL1e/fv3s9VesWKE333xTP//8s/7++29FR0erU6dOuu222zRs2DAFBweX6r86fbgyF9VVUFCgGTNmKCUlRbt371Zubq7q1Kmjfv366dlnn1Xr1q3d0s+ZwqfJsH79+slkMjmUmUwmFRYWVqmuJ5TXPwAAAAAAAAAAZRk3blyVE2E2p06d0ujRo/Xzzz97KCr3mD59uqZMmSJJCg4OVkxMjCQpIyNDGRkZ+uSTTzRt2jSNHj3aYzGcOnVK/fr1088//6yQkBBFR0eXyhc89NBDeu211yQVf89fq1YtnTx5UsuWLdOyZcv04Ycf6quvvlJ0dLTTfXhrLnbu3KnExERt3rxZkhQTE6OQkBD9/fffWrBggZYsWaJ169aREKsGQzwzzGq1eqQuYBRms9nXIcAgSq4F1kb1BPr8+dP4jBarr+LxVr+e7McTbRttfcA4WBuuCfT587fxGSlePgeN1b6R1gaMh/XhvECfO38bn5HiLdl3UVGRJCkoqPgJQRaLxWObLCwWiyRp06ZNWr9+vVNtrFmzRuvXr1dCQkKl/ZR37YqqtN24cWM9+eSTGjx4sDp27KjQ0FBZrValp6fr9ddf1+uvv66HHnpIvXv31vnnn19mP0VFReXGbfvO32q1lqpje+/NN9+UJM2ePVtDhgxReHi4jh07JpPJJIvFojfffNOeCBs5cqQmTZqkxo0by2w2a9asWRo3bpyWLVumESNGaN68eU71Ud25iI+PL2fWK7Zjxw5ddNFFOnbsmK6//no988wzat26tQoLC/Xxxx9r1KhRyszM1COPPKIvv/zSqT5cZbFY7PNm+5vLzs4uc+fd6fLy8jweW3lMVh9ml4KCghz+IbJarQ4Lq6K6nlBR/8DpUlJSSm3ZlYo/fFNTU+3XycnJio2N9WJkAAAAAAAAwJnJZDKpQYMGkmTf/dOkSZNKv6B31cMPP6z33nvP6fvvuusuvfzyy26MyLseffRRzZo1S7fffruSk5Md3jv//PO1b98+vfnmm7rlllvKvP++++7Txx9/rJtvvlkzZsxweG/w4MH66aefJEnz5s3T5ZdfXur+vLw8tW/fXidOnNANN9ygWbNmlarzzjvvaNy4cZKk5cuXq3PnztXqo6oqmouqKCgoUL9+/bR9+3bdcccdmjZtWqk6Tz75pN544w2FhIQoIyND4eHhTsfrLIvFokOHDkkqToJJ0tGjRyvdzJSRkeGwa27r1q1q37695wI9TZBXeqmA1Wq1v6pT1xMvoKrS09O1cuXKUq/TE2EAAAAAAAAAAt+WLVt8er+vDRo0SJK0du1aj/XRtm3bcpNUy5cv14kTJyRJjz/+eJl17rrrLjVu3FiStGDBgmr3UVWuzsVHH32k7du3KzY2VlOnTi2zzmWXXSZJKiwsVEZGhnOBnoF8ekzi8uXLPVIX8LS4uDj17du3VHnJnWEAAAAAAAAAApurx0Tm5OS4KRLPSU9P1+zZs7V69Wrt2bNHOTk59uPxbA4ePOix/nv06FHue5s2bZIknX322WrVqlWZdYKDg9WnTx999tln2rhxY7X7OJ0n52LOnDmSpHvuuUc1a9Yss87pzzxjk0/V+TQZVlYywR11AU9LSkpSUlJSqfJt27apQ4cOpcq7d++uyMhIL0QGozObzVq3bp39mrVRPYE+f/40PqPF6qt4vNWvJ/vxRNtGWx8wDtaGawJ9/vxtfEaKl89BY7VvpLUB42F9OC/Q587fxmekeEvGEhkZqaCgIPszw6KiohQS4pmvwS0Wi3Jzc10ee61atRwSHOX1YxMREeG2ox+r0vZXX32lW2+9Vf/884+9LCYmRmFhYTKZTMrPz9eJEydkNpsVERHh0J7t9xAWFlbuGGvUqGH/b8k6tljOPvvscu/PzMyUJDVt2rTCeYyLi5MkHT9+3KFeVfqwqc5cVNZWSQcPHtTmzZslSYmJieXen5WVZf+5bdu21e7HHQoLC+2/W1v/bdu2rXRdpqWleTy28vg0GQacKSIjIxUTE+PrMGBArA3XBPr8+dP4jBarr+LxVr+e7McTbRttfcA4WBuuCfT587fxGSlePgeN1b6R1gaMh/XhvECfO38bn5HiDQoKcvhCPjg42OPPDOvYsaPWr1/v9P3x8fHVitGTYyrZ9rFjx3TnnXfqn3/+0YABAzRx4kR1797d4TlVS5cu1SWXXGK/vywlfy+nM5lM9v+WrGN7r0aNGk7dXzKG08dZnT4k981FeWxHK9atW7fcHW6S7DvbWrdurdq1a1erD3exWq32ebONMzo6utLEsy+eb2bj82eGAQAAAAAAAADgr4YNG+bS/XfddZebInG/b7/9VllZWapTp47+85//qG/fvqUSGocPHy73flty5NSpU+XWse3sclbDhg0lSfv376+wnu19W/3qcnUuKrNhwwZJUpMmTSqst3DhQknSFVdcYS+77bbbFBISory8vFL1U1JSZDKZ9MMPPygzM1P16tVTfHy8wxGLOTk56tKlixo1aqTdu3c7PQYjIxkGAAAAAAAAAICTOnXqpG7dujl1b69evZSQkODmiNxn3759kqQ2bdooIiKizDo//PBDuffXqVPHoZ2SioqKlJqa6lKMXbt2lVSc7Nq5c2eZdSwWi5YvXy5JTv+uXJ2LytiOEDz9GMSSli9frg0bNshkMmnkyJH28h49eshisZR6HprZbNa///1vXXnllbrkkktUq1YtPf7449q0aZO+/PJLScVHHt54443auXOnvvnmG7Vs2dLpMRgZyTAAAAAAAAAAAFwwdepUhYWFVeuesLAwJScneygi96hVq5YkaefOnWXu7tq0aZPmzZtX7v3nn3++JOnLL7902Ilk8/7771e6o6syAwcOVL169SRJkydPLrPO22+/rYMHD0qSbr75Zqf6cXUuKmNLhu3bt09bt24t9f7Ro0c1YsQISVJSUpLatWtnf69Hjx6SVCqx+OKLL+qvv/7SSy+9ZC974IEHdNZZZ2nKlCkqKirSyJEjtXTpUi1YsMCeWAxEfpMMKyoq8nUIAAAAAAAAAACUEh8fr08++aTKCbGwsDB99tlnhk8+DBo0SEFBQTp+/LhuvfVWHThwQJKUn5+v+fPna9CgQYqOji73/qFDh0qSfvvtN40aNUrHjh2TVLz76bXXXtM999yjunXruhRjeHi4PQn28ccf65577tGRI0ckSbm5uUpOTtbYsWPt8XTp0sWpflydi4rs3bvXPje1atXSrbfequ3bt0sq3rn1zTffqFevXvrzzz913nnn6bXXXnO4v3PnzqpZs6ZDMuzAgQN6+eWXNWrUKJ133nn28vDwcE2cOFGbN2/WwIEDlZKSotmzZ+vSSy91KnZ/4TfJsGbNmmn8+PHlbnMEAAAAAAAAAMBXBg8erNWrV6tXr14V1uvVq5dWr16twYMHeyky55177rl69NFHJUlffPGFmjZtqtq1aysqKkpDhw5VVFRUhbvbLr74Yt1+++2SpFmzZql+/fqqU6eO6tSpo4ceekh33323rrrqKpfjfOCBB/Svf/1LUvEusCZNmqhu3bqqVauWxowZo4KCAvXv31/vvvuu0324OhcVse0Ka9y4sV599VVt3rxZ7du3V506dRQVFaXBgwdr9+7d6tKli3744Qf7LjWb0NBQxcfHa/369fay8ePHKyQkpMzdcnfddZcaNWqkZcuW6dlnn3X5uXf+wG+SYYcOHdLUqVN13nnn6YILLtB7772nnJwcX4cFAAAAAAAAAICk4udX/fzzz9qwYYPuu+8+9e7dWx07dlTv3r113333acOGDfr5558NvyPsdC+88II++OADde/eXeHh4SooKFCrVq00fvx4bdy4UWeddVaF96ekpGj69Onq3LmzwsPDVVRUpAsuuEDz58936zGRr776qpYtW6YbbrhBjRo1Uk5OjqKjo9W/f3+99957WrJkidM7t2xcnYvybNiwQZKUkJCgO++8U/Pnz7c/B6xGjRrq2bOnZsyYobVr15bbR8+ePbVz505lZ2crLS1Nc+fO1fjx49WgQYNSdd9880377rmSibVAFeLrAKrLarVq7dq1Wrt2rUaPHq0bb7xRw4cPV9++fX0dGgAAAAAAAAAASkhIUEJCgq/DcJvbb7/dvsOrpH79+tmfB2axWEq9HxQUpNGjR2v06NFl3p+SkqKUlJQy31uxYkW14uzfv7/69+9frXuq20dV56I6bDvD4uPjJUmJiYlKTEysVhs9evRQUVGR0tLSNGnSJDVv3tx+POTp5s+fr3/961966KGHtHr1aj3zzDMaPny4IiIiqh23P/GbnWE2JpNJVqtVVqtVubm5mjt3rgYMGKCWLVvqmWee0b59+3wdIgAAAAAAAAAAQJWUTIY5o2fPnpKkiRMnauXKlXr++edVs2ZNhzorVqzQsGHDNGTIEL388st66qmndPjwYU2fPt354P2E3yTD2rRpY0+CmUwm+8tWtmfPHk2aNEktWrTQoEGD9Mknn+iff/7xddgAAAAAAAAAAABlOnDggP3IQleSYXFxcWrYsKFWrVqlHj16aOjQoQ7vb9myRddee6169uyp999/XyaTSZdddpl69+6tF198USdOnHBpHEbnN8mw3377TT///LNGjBihmJiYchNjRUVFWrp0qW699VY1adJE999/v8ND4wAAAAAAAAAAAIzAtiusVq1aatGihUttdevWTVLx89NMJpO9fN++fbr88svVtGlTffXVVw47xp5++mmdPHlSU6dOdalvo/ObZJhUvM3vnXfe0aFDhzR37lxdcskl9iSYpFK7xU6ePKm33npLPXv2VMeOHfXaa6/p6NGjPh4FAAAAAAAAAADA/5JhnTt3dkhgVVdOTo5++eUXJSYmqnfv3g7vNWvWTPv379fWrVtVu3Zth/cGDBggq9WqF154wem+/YFfJcNswsLCdOutt+r777/Xnj17NGXKFJ1zzjkVHqO4bds2PfLII2ratKmuu+46ff3112U+zA8AAAAAAAAAAMAbJk2aJKvVqhUrVrjUzuTJk5WTkxPwO7yc5ZfJsNM1a9ZMTz75pP744w+tXLlSSUlJioyMLDcxVlBQoK+//lrXXXedmjZtqscee0zbt2/39TAAAAAAAAAAAACq7Pjx4/r444/10EMP6dVXX9Uzzzzj8lGLgcrvk2Gn69Onj9577z0dPnxYc+bMUd++fSWp3GMUjxw5oldeeUUdO3ZUjx499M477ygrK8uXQwAAAAAAAAAAAKjUkiVLdMstt+jjjz/WxIkT9fDDD/s6JMMKqGSYTUREhO644w4tX75cu3bt0pNPPqnY2NgKj1FMTU3Vvffeq7POOsvX4QMAAAAAAAAAAFRo6NChslqtOnTokCZPnuzrcAwtIJNhp2vRooWmTJmiPXv2aOnSpbr11lsVHh5eKjEmFe8gy8vL83HEAAAAAAAAAAAAcJeAT4adrn///po7d64OHz6sd955R71797YfoQgAAAAAAAAAAIDAE+LrAHwhKipKt99+u8LDw3XixAn99ttv9t1hAAAAAAAAAAAACBxnXDJs7dq1SklJ0aeffqqsrCxfhwMAAAAAAAAAAAAPOiOSYYcOHdIHH3yg999/Xzt27JAkh+MR2RUGAAAAAAAAAAAQmAI2GVZQUKCvvvpKc+bM0ZIlS1RUVFRuAsxW3rFjRw0fPtzrsQIAAAAAAAAAAMAzAi4ZtmHDBs2ZM0effPKJTpw4Iel/ya6yEmB16tTRzTffrDvvvFMJCQneDxgAAAAAAAAAAAAeExDJsL/++ksffvihUlJStG3bNknlH4NotVoVFBSkgQMH6s4779S1116r0NBQr8cMAAAAAAAAAAAAz/PbZJjFYtF//vMfzZkzR4sXL1ZhYWGlxyC2bNlSw4cP17Bhw9S0aVOvxwzn5ObmavXq1Vq2bJnS0tL0+++/6++//5ZUvLOvbdu26tOnj5KSktSiRQsfRwsAAAAAAAAAAIzE75Jhv/76q1JSUjRv3jx7QqSiYxAjIyOVmJio4cOHq0+fPt4PGE47cuSIxowZo0WLFslsNpdZ59ChQzp06JCWL1+uZ555RiNHjtTLL7+sqKgoL0cLAAAAAAAAAACMyG+SYcnJyUpJSdGvv/4qqeJjECXpwgsv1PDhwzVkyBBFRkZ6N1i4xb59+/Tpp5+WKo+Li1OTJk0UGhqqPXv2KCMjQ5JUVFSkt99+Wxs2bNDSpUsVExPj7ZABAAAAAAAAAIDB+E0ybOzYsTKZTBXuAjv77LM1bNgwDR8+XK1atfJJnHA/k8mkvn37avjw4br00kvVqFEjh/dTU1P14IMPau3atfbrUaNG6ZNPPvFFuAAAAAAAAAAAwECCfB1AdZlMJntSzGq1KjQ0VImJifr222+1d+9ePfvssyTCAkRQUJCuv/56bd68WcuXL9ewYcNKJcIkqWvXrlq5cqX69u1rL/v000+1adMmL0YLAAAAAAAAAACMyG92htnYdoHFx8dr+PDhuvXWW1WnTh0fRwVPSEhI0Oeff16luqGhoXr77bfVtm1be9kXX3yhzp07eyg6AAAAAAAAAADgD/wqGVa3bl3deuutuvPOO3X++ef7OhwYTJs2bXTuuefqjz/+kCT99ttvPo4IAAAAAAAAAAD4mt8kwxYsWKCrrrpKNWrU8HUoOM3Ro0e1fv167d69W1lZWapRo4bq1aundu3aqWvXrl7/fdWrV8+eDMvKyvJq3wAAAAAAAAAAwHj8Jhl2/fXX+zoEQzl+/LhSU1Ptrw0bNigjI6NUPduxku62YMECTZ8+XT/99FO5fURHR2vIkCF67LHH1Lp1a4/EUdLevXvtPzds2NArfQIAAAAAAAAAjM1isWj69OmaO3eudu7cqdzcXEnSl19+qWuvvda3wcHj/CYZdqbbunWrvvnmG23YsEGpqanas2ePT+I4cOCAbr31Vq1cubLSutnZ2Zo9e7bmzp2rCRMmaMKECTKZTB6Lbe3atTp06JD9umfPnh7rCwAAAAAAAADgWykpKUpPT1e/fv3Ur1+/CuuOHTtWb7zxhiQpNDRUjRo1kiSFhYV5OkwYAMkwPzFr1ixNnz7dpzHs3LlT/fr1c0g4VUV+fr4mTpyo3377TXPnzlVwcLBH4nv++eftP4eFhbGbEAAAAAAAAAACWEpKin3jRkXJsOzsbL399tuSpBdffFGPPPKIRzduwHhIhqFKjh07poEDB5aZCOvSpYuuueYatWjRQnl5edq5c6fmzZungwcPOtT7+OOP1bBhQ02bNs3t8X300Uf6+uuv7dcPPvigmjRp4vZ+AAAAAAAAAKAyaWnSrFnSpk1STo4UFSV17iyNGCElJPg6ujPP77//roKCAknSvffeSyLsDEQyzM+FhoaqQ4cO6tq1q+bPn6+TJ096pJ9Ro0aVeiZZdHS0PvzwQ1199dWl6j/33HN67rnnNHnyZIfy6dOn69JLL9Xll1/utti2bNmiu+++237dpk0bTZo0yW3tAwAAAAAAAEBVpKZKDz4orV1b+r01a6SZM6VevaTkZKlrV+/Hd6ayPR9MkqKionwYCXzFp8mwVatWlVl+0UUXVbmuJ5TVvxGEhISoXbt26tq1q/3VqVMnhYaGSpK+++47jyTDlixZoi+++MKhLDQ0VMuWLVPXcv7FrlGjhiZNmqTatWtr7NixDu+NHj1av/32m0JCXF9++/fv15VXXimz2SxJCg8P1yeffKLIyEiX2wYAAAAAAACAqlq0SLrpJunUqYrrrVkj9ekjffaZNHiwd2Jzh/T0dE2bNk1LlizR3r17VVRUpNjYWF166aV6+OGHFRsbW+qeAQMGaNWqVZo0aZImTJig119/XR988IH++OMPRUREqHfv3poyZYo6deokqThp9eqrr+qTTz7Rnj17FBYWpksuuUTPPfecWrZsaW83JSVFw4cPt19PmTJFU6ZMceh7z549WrFihUM9SQ67wvr27asVK1Y4NR8FBQWaMWOGUlJStHv3buXm5qpOnTrq16+fnn32WbVu3dqpduEZPk2G9evXr9R2RJPJpMLCwirV9YTy+ve1cePG6fnnn1d4eLjX+3766adLlU2aNKncRNjpxowZo2+++UZLliyxl+3atUvz5s3TsGHDXIrr77//1qBBg7Rv3z5JxcnCTz/9VJ07d3apXQAAAAAAAACojo0bg3XTTUGVJsJsTp2SEhOl1av9Y4fYRx99pLvuukv//POPJKlmzZoKCgrSjh07tGPHDs2ZM0cLFizQxRdfXOb9BQUFuuyyy7R06VKFhoaqRo0aOnr0qBYuXKilS5dq+fLlatGihQYOHKiNGzcqLCxMJpNJx48f1/z587VixQqtX7/ennALDw9Xo0aNdPz4cRUUFCgyMrLUjq/g4GB7vfz8fJ04cUKS1KhRI3udunXrOjUfO3fuVGJiojZv3ixJiomJUUhIiP7++28tWLBAS5Ys0bp160iIGUiQrwOQJKvV6vCqTl1PvIyoSZMmPkmEbdu2TatXr3Yoq1+/vh555JEqt/H888+XKps5c6ZLcZ08eVKDBg3Sb7/9JkkKCgrS3LlzddVVV7nULgAAAAAAAABU17hx4Tp1qnqbOU6dkkaP9lBAbrRkyRINGzZMFotFjz32mPbs2aO8vDyZzWb9/vvvSkxMVHZ2thITE0s9asdmxowZ2rRpkz777DPl5OQoOztb69at0znnnKOcnByNGTNGI0eO1IkTJ/Tdd9/JbDYrJydHP/zwgxo0aKC//vpL48ePt7c3dOhQHT58WL1795YkPfLIIzp8+LDDq1mzZvZ6p598dnqdkieiVcWOHTvUu3dvbd68WTfccIN27NihzMxM5eTk6P3331eNGjWUmZmpRx99tNptw3MMkQwzmUxV3vVlq+uJF0r75JNPSpUNHz7cfjRjVXTp0kVdunRxKFu7dq327NnjVEzZ2dm67LLLtHHjRknFa2L27Nm66aabnGoPAAAAAAAAAJy1aVOw1q937hC2NWuktDQ3B+RGRUVFuv/++1VUVKQ333xTU6dOVVxcnP079TZt2mj+/Pm6+uqrlZWVpWnTppXZzsmTJ/XVV1/pxhtvVI0aNWQymdStWze9++67kqSff/5Zixcv1pIlSzRo0CAFBQUpKChIF198sV544QVJ0hdffKGCggJvDb1MBQUFSkxM1LFjxzRq1CgtWLDAvvsrJCREw4YN05gxYyRJ3377rfLy8nwZLk7j82RYdXZknYk7wnxt8eLFpcpuvPHGardT1j1ltV0Zs9msK6+8Ur/88ou9bMaMGUpKSqp2WwAAAAAAAADgqrlzq75xoCyzZ7spEA9YtWqV/vjjD9WvX18jRowot57tkTjff/99me9feOGFuvDCC0uV9+3bVzVr1pRU/B1yq1atStW59NJLJUl5eXn6448/qj0Gd5ozZ462bNmiuLg4JScnl1ln8P8/CK6wsFDp6elejA4V8ekzw5YvX+6RunAPs9mstBL/W0JERIQSEhKq3VafPn1Kla1evVr33ntvlds4deqUrr76aodjG1977TXdc8891Y4HAAAAAAAAANxhy5Zgl+7ftMk9cXjCTz/9JEnKzMzUWWedVW69/Px8SdLevXvLfL979+5llgcHB6t+/fo6cOCAunXrVmad05/xZXvul6+89dZbkqQxY8bYk3glxcTE2H9mE45x+DQZ1rdvX4/UhXts2rRJRUVFDmVdu3ZVSEj1l023bt1Uo0YNh22sGzZsqPL9+fn5uu6667Rs2TJ72QsvvKCxY8dWOxYAAAAAAAAAcBez2bVH8GRnuykQDzh48KCk4uMBjxw5Umn98o4FjI6OLvce2/fN5dU5/ftoXx6TePDgQfuje6655ppy6x0+fNj+c7NmzTweF6rG58ckwrh+//33UmVlbVOtitDQUDVt2tShbPfu3SosLKz03sLCQg0dOtThWMUpU6Zo3LhxTsUCAAAAAAAAAO4SGena7p8K8kQ+Z7FYJEk9evSo0qOIqvJ9r7+y7ZKrW7euWrRoUW691NRUSVLr1q0rTALCu0iGoVxlnWfavHlzp9uLjY11uLZYLMrIyKjwHovFottuu01fffWVvWz8+PGaOHGi03EAAAAAAAAAgLt07Ghx6f7Ond0Thyc0btxYUvnHH55JbCedNWnSpMJ6CxculCRdccUV9rLbbrtNISEhZe6cS0lJkclk0g8//KDMzEzVq1dP8fHxDkcs5uTkqEuXLmrUqJF2797tjuGccXx6TCKM7fTtnDaubOss694jR47onHPOKbO+1WrViBEj9Omnn9rLHnnkET377LNOx1Adf/31l44ePVqte3bt2lVmudlsdkdICAAl1wJro3oCff78aXxGi9VX8XirX0/244m2jbY+YBysDdcE+vz52/iMFC+fg8Zq30hrA8bD+nBeoM+dv43PSPGW7Nv22JegoOJ9IBaLRSaTa8cYlse2a2rYsHy9917Zz4+qiqQkiywV5NMsJd4see2Kytru2bOnpOLvin/55Rd17dq1Wu3ZFBUVVRp3VepYLBaHOrbfbcnyiuJydv5sybCsrKxy21i+fLk2bNggk8mkO++8016vW7du+uijj5SamqrevXvb65vNZv373//WFVdcof79+0uSHnvsMT3++OP6/PPPdd1116mwsFA33HCDdu7cqR9++EFxcXFuXQPOsFgs9mSd7W8uOztbwcEVPz+vvGM0vcFvkmFPPfWU/efGjRtr1KhRbmv7nXfecUj8sOuo2PHjx0uVRUVFOd1eWfceO3as3PqfffaZUlJS7NehoaHasmWLLrvssir116hRI73//vvVjtNmxowZmjJlitP3n27dunVuaQeBh7XhmkCfP38an9Fi9VU83urXk/14om2jrQ8YB2vDNYE+f/42PiPFy+egsdo30tqA8bA+nBfoc+dv4zNSvLbkmO14upycnEq/oHdVp04WdetWqPXrq/91e7duhTr33JxqPTcsNze32v0423bXrl11zjnn6M8//9TYsWO1cOFChYaGlnv/iRMnVKdOHfu1LWmTn5+v7HIGaUumnDp1qtw6Nnl5eQ51IiIiJElHjx6t8N7TkzCV9VGetLQ0SdK+ffv0yy+/qF27dg7v//333xo5cqQk6ZZbblGzZs3sfXXo0EGS9PPPP6tjx472e55//nn99ddfmjhxor3usGHDNH36dE2ePFkDBgzQgw8+qGXLlumTTz5RmzZtnI7fnSwWi0MSTJJWr17tsJutLJWdFOdJfpMMmzx5sj3L26lTJ7cmw2bOnKnNmzfbr0mGFSvr/+gIDw93ur2y7q3oH+6S7+Xn5+u7776rcn+uHOkIAAAAAAAAAFU1dWqerrgiSqdOVX0XWliYVVOn+m6nTFWEhITo1Vdf1Y033qi1a9fqyiuv1IQJE9S7d2/VqFFDUvHjdpYtW6YPP/xQV1xxhR555BGvxXfeeefp22+/1ZIlSzR69GidddZZHuknIyPDvnkkJiZGo0aN0qxZs9S2bVsVFhZq6dKleuKJJ5Senq42bdqUOt2sY8eOqlmzpjZu3GgvO3jwoN544w3dcccdatOmjb08PDxcjz76qB566CFdd911WrVqlWbOnKmLL77YI2M7U/jdM8Mqyyy60q6n2vZXBQUFpcrCwsKcbq+sZFh+fr7T7QEAAAAAAACAEcTHWzRnjllhYVX7jjkszKo5c8yKj/ftcXdV0bdvX6WkpCg6Olqpqam69tprdfbZZ6tly5Zq3Lix4uPj9fDDDzskerzl5ptvVlhYmP7880917NhRbdq00fnnn6/zzz9fBw4ccFs/ts00jRo10rPPPqtt27apV69eiouLU9OmTXXTTTdpz5496ty5s7788kvVqlXL4f7Q0FCdf/75DnP09NNPKzg4WI8//nip/m6//XY1bNhQq1at0oQJE3TTTTe5bSxnKr/ZGeZpJpOJZFgVuHK+bln3VjTnSUlJSkpKcro/V913331KTEys1j27du3StddeW6q8e/fuioyMdFNk8Gdms9nh6ADWRvUE+vz50/iMFquv4vFWv57sxxNtG219wDhYG64J9Pnzt/EZKV4+B43VvpHWBoyH9eG8QJ87fxufkeItGUtkZKSCgoLszwyLiopSSIhnvga3WCwOp1tdf32oWrQo0tixQVq7tvzvUXv2tGratCJ17Vq1U7hK9hMREeG2ox+r2vZNN92kAQMGaObMmVq8eLF27dqlzMxMRUZGqm3bturatauuuOIKDRo0SIWFhfb7bG2Fhobaj64syfa7CgsLK7eOTXh4uEOdzp0764cfftDUqVO1bt06HTt2zN7/6e2dvlGjsj7Ksn37dklSQkKC7r33XjVo0ECvvvqqfvvtN9WoUUOdO3fW7bffrhEjRpS73nr16qU33nhDkvTHH3/o008/1bPPPqsWLVqUqpucnKy//vpLktSwYUOnYvakwsJC++/NFlvbtm0rXZe2oyZ9gWQYymXb5no6Vx5wV9a9FZ0v62sNGzZUw4YN3dJWZGSkYmJi3NIWAgtrwzWBPn/+ND6jxeqreLzVryf78UTbRlsfMA7WhmsCff78bXxGipfPQWO1b6S1AeNhfTgv0OfO38ZnpHiDgoIcvpAPDg72+DPDTu+rR49grVkjpaVJs2dLmzZJ2dlSdLTUubN0111SQoJJkvMxeXJMFbXdpEkTPfXUU3rqqafKvd9isTg802rZsmWVxpqenl5pXBVtqrjgggv09ddfV3j/xRdf7NJmmE2bNkkqToYFBwdr6NChGjp0aLXa6NWrl5KTk/Xrr79q0qRJat68uR566KFS8zN//nw9/PDDeuihh7R69Wo999xzuuuuu+zPRzMCq9Vq3/xiiz86OrrSxLMrj2FyFckw/e8hfpI89n8J+KOy/rjcnQwz8v/hAgAAAAAAAADOSEgofiEw2HY0xcfHO91Gz549JUkTJ07UqlWr9PHHH6tmzZoOdVasWKFhw4ZpyJAhevnll/Xdd9/p8ssv1/Tp0/XEE084PwCQDJOkzMxM+89RUVE+jMRY6tWrV6osJyfH6fbKuresPgKR2Wz2dQgwiJJrgbVRPYE+f/40PqPF6qt4vNWvJ/vxRNtGWx8wDtaGawJ9/vxtfEaKl89BY7VvpLUB42F9OC/Q587fxmekeEv2XVRUJOl/R+9ZLBaXHv1SkdM3WZR17Q/9uLttb82JNx04cEBHjhyRJJ1//vlOj6lZs2b254B1795dN954o0NbW7Zs0bXXXqsePXrovffeU1FRkQYOHKhevXrpxRdf1MiRI1WnTh23jMlVFovFvtPO9jeXnZ1d6S5AVzbbuMpk9ZMHZQUFBdmf69W5c2e3nS2ZlZVlX0BWq1UtWrTQ7t273dK2t8XFxWnv3r0OZa78eidMmKBnn33Woeypp57Sk08+6VR7/fv314oVKxzKdu/erXPOOcfZEH0mJSVFKSkppcrNZrNSU1Pt18nJyYqNjfViZAAAAAAAAMCZyWQyqUGDBpL+9xyjJk2aeO2YRASm//73v7rlllsUExOj9PR0l5KrQ4cO1ffff6/FixerR48e9vL9+/fr0ksvVUxMjBYvXqxatWrZ31u1apWuueYajRkzRpMnT3ZlKG5jsVh06NAhSbIfi3n06NFK8xEZGRkaPXq0/Xrr1q1q37695wI9zRm/M+y9996zn29pMpnUpk0bX4dkGGU9uK9ksq06MjIyHK6Dg4P9NlGUnp6ulStX+joMAAAAAAAAAIAHbd68WZLUsWNHlxJhOTk52rBhg3331+maNm2qbdu2lXnfRRddpBMnTjjdL4oZJhlWMlFSkfz8fO3bt8+pXU8Wi0U5OTn6888/9e2332rOnDn2HWcmk8mlMz8DTVmJwV27djnVlu13drqWLVv67TPa4uLi1Ldv31LlJXeGAQAAAAAAAAD817hx4zRu3DiX25k6darMZrNhdnedaQyTiYiLi6s0q2pLfv3222+Ki4tzS7+2JJhNYmKiW9oNBPHx8QoKCrKf+SlJqampKiwsrHYSKzU1VQUFBQ5lCX78BMmkpCQlJSWVKt+2bZs6dOhQqrx79+6KjIz0QmQwOrPZrHXr1tmvWRvVE+jz50/jM1qsvorHW/16sh9PtG209QHjYG24JtDnz9/GZ6R4+Rw0VvtGWhswHtaH8wJ97vxtfEaKt2QskZGRCgoKsj8zLCoqymP/Q77FYlFubq79OiIiwiNHMnqyH3e37a058RfHjx/X999/r/Xr1+vNN9/U1KlTy/z+2N8UFhba/8ZsR5K2bdu20t+1ux5/5QzDJMOkqj/fyp2PObMlwkwmkwYOHKjOnTu7rW1/FxkZqfj4eG3YsMFeZjabtXHjRnXr1q1abf3444+lyi666CKXY/QXkZGRiomJ8XUYMCDWhmsCff78aXxGi9VX8XirX0/244m2jbY+YBysDdcE+vz52/iMFC+fg8Zq30hrA8bD+nBeoM+dv43PSPEGBQU5fCEfHBzstWSMt/ryZD/ubtub829Ey5Yt02233abGjRtr4sSJevTRR30dklucvsnI9vuNjo6uNPEcHh7u8djKE+Sznstge25XWa+q1qvuSyr+xbVr105z5szxxbAN7bLLLitVtmDBgmq3U9Y9ZbUNAAAAAAAAAEAgGDp0qKxWqw4dOsTxiD5mqGSY1Wot91XVetV9tWnTRi+++KLWrVunJk2a+GjkxnXTTTeVKpszZ47y8/Or3MbGjRu1fv16h7IePXqoRYsWLscHAAAAAAAAAABQEcMck1jRriyr1ao777xTJpNJVqtVsbGxmjJlilP9hISEKDo6WnXq1FGHDh1Up04dZ0M+I3To0EEXXnihwzGHR48e1WuvvVblhwY+8cQTpcruvfdet8UIAAAAAAAAAABQHsMkw+64444K37/zzjslFR+RWLdu3Urrw30mTJhQ6kjDSZMmaeDAgUpISKjw3jfeeEPfffedQ9k555yjW265xe1xGpnZbPZ1CDCIkmuBtVE9gT5//jQ+o8Xqq3i81a8n+/FE20ZbHzAO1oZrAn3+/G18RoqXz0FjtW+ktQHjYX04L9Dnzt/GZ6R4S/ZdVFQkqfjZYZJksVhKPYbHXSwWS4XX/tCPu9v21pzAtywWi/1EP9vfXHZ2dqXPh8vLy/N4bOUxWUueQWhQtn+8JKlz585KS0vzYTTGFBcXp7179zqUuevXe+2112rhwoUOZTExMfrwww911VVXlapfUFCgF154QRMnTiz13qJFi3TllVe6JS5fSUlJUUpKSqlys9ms1NRU+3VycrJiY2O9GBkAAAAAAABwZjKZTGrQoIEkKTo6WpLUpEmTSr+gB1A9FotFhw4dklScBJOKT5SrLB+RkZGh0aNH26+3bt2q9u3bey7Q0xhmZ1hlTt8JdqYmF6644godPHiw3PfLeq9z584Vtvntt9/qrLPOqrTvd999Vxs2bND+/fvtZVlZWbr66qvVtWtXXXPNNWrRooXy8vL0xx9/6KOPPtKBAwdKtfPAAw/4fSJMktLT07Vy5UpfhwEAAAAAAAAAACrhN8mwip4pdqbYvn17qZ1flfn1118rfD8/P79K7TRo0EDff/+9BgwYoMOHDzu8l5qa6rAbqjxDhgzRtGnTqtSf0cXFxalv376lykvuDAMAAAAAAAAAAL7lN8kw+N55552ndevW6ZZbbtGPP/5Y5ftq1Kih8ePHa+LEiQ7HXfqzpKQkJSUllSrftm2bOnToUKq8e/fuioyM9EJkMDqz2ax169bZr1kb1RPo8+dP4zNarL6Kx1v9erIfT7RttPUB42BtuCbQ58/fxmekePkcNFb7RlobMB7Wh/MCfe78bXxGirdkLJGRkQoKCrJ/DxkZGakaNWp4pG+LxaLc3Fz7dUREhEeOZPRkP+5u21tzAt/Kz8+3/43ZjiQ977zzKv3+35ePvyIZhmpp1qyZVq1apc8++0zTp0/XmjVryj0HNCoqSomJiXrsscfUtm1bL0dqLJGRkYqJifF1GDAg1oZrAn3+/Gl8RovVV/F4q19P9uOJto22PmAcrA3XBPr8+dv4jBQvn4PGat9IawPGw/pwXqDPnb+NzyjxWq1WBQcHO3whn5ubq7p163ql/+DgYK8kfjzZj7vb9tacwLvy8vJkMpkkFf+OTSaTatWqZS8rT3h4uDfCK9MZkww7fvy4Fi9erM2bNyszM1MNGjRQp06dNHjwYNWsWdPX4VVJenq6r0OQVPwgyiFDhmjIkCH666+/tG7dOv3555/KyspSSEiI6tevr/POO0/dunVTaGior8MFAAAAAAAAcIYICwtzeDTMX3/9Jan4f9x396lVFotFFovFfl1YWFjuxgGj9uPutr01J/CNoqIi5eTk2P+ubKKioipNhPmaXyXDdu7c6XB9zjnnKCSk8iE8//zzeu655xy2Z9rUqlVLr7zyioYPH+62OM8kDRs21ODBg30dBgAAAAAAAAAoIiLCIRlmtVp15MgRHTlyxO19Wa1WFRUV2a+DgoI8khDwZD/ubttbcwJjMcLO0Mr4TTLs559/Vp8+fezXZ599dpV2St1///166623ys0+nzx5UiNGjND27dv10ksvuStcAAAAAAAAAICXhYeHKz8/v8yNEQDcLyIiQlFRUb4Oo1Lu3RfqQQsWLJDVarUntUaNGlXpttYvvvhCM2fOlFR8tF95L6vVqldffVXvv/++x8cBAAAAAAAAAPCMoKAgNWvWTBERER7vq6ioSNnZ2fbX6Tui/KUfd7ftrTmBMURERKhZs2ZuP4LUE/xmZ9jy5cvtiStJuvHGGyusb7Va9e9//7tUWUmnJ8TGjRun66+/XtHR0e4LHJBkNpt9HQIMouRaYG1UT6DPnz+Nz2ix+ioeb/XryX480bbR1geMg7XhmkCfP38bn5Hi5XPQWO0baW3AeFgfzgv0ufO38Rkp3vJiqVWrlkJDQ5WXl6e8vDyPPLeqZKLHk8kwT/Xj7ra9NSfwHZPJpPDwcPsrJyenyvfm5eV5MLKKmax+8PQ6s9ms2rVrq6ioSFarVS1atNDu3bsrvOe///2vrrzySnuiy2Qy6bLLLtPzzz+vtm3b6tChQ5o2bZqmT5/uUOeVV17R2LFjvTMw+K2UlBSlpKSUKjebzUpNTbVfJycnKzY21ouRAQAAAAAAACiJ51YB7uFKSikjI0OjR4+2X2/dulXt27d3R1iV8oudYTt37pTFYrHv4urWrVul93z88cf2n233/Oc//7Fv12vevLlee+01hYaG6qWXXrInxObNm0cyDJVKT0/XypUrfR0GAAAAAAAAgCrwgz0hADzIL5Jh6enpDtdVyRR+++23Dju+Jk6cWOa5lRMnTtQ777yjrKwsSdKGDRuUnZ3NUYmoUFxcnPr27VuqvOTOMAAAAAAAAAAA4Ft+kQw7fPiwJNkTW02aNKmw/ubNm3X8+HH71tf69evr8ssvL7NuZGSkLr30Us2fP9/h/gsuuMBN0SMQJSUlKSkpqVT5tm3b1KFDh1Ll3bt3V2RkpBcig9GZzWatW7fOfs3aqJ5Anz9/Gp/RYvVVPN7q15P9eKJto60PGAdrwzWBPn/+Nj4jxcvnoLHaN9LagPGwPpwX6HPnb+MzUry+jCUQPgv5HIQ3paWl+axvv0iG5ebmOlzHxMRUWP/HH3+0/2wymXT55ZdXeCZsQkKCQzJs165dJMPgVpGRkZWuW5yZWBuuCfT586fxGS1WX8XjrX492Y8n2jba+oBxsDZcE+jz52/jM1K8fA4aq30jrQ0YD+vDeYE+d/42PiPF68tYAuGzkM9BeFJ4eLjP+i59bqABnTp1yuE6JKTiHJ7tmDrbObD9+vWrsH7Tpk0drjMzM6sZIQAAAAAAAAAAAIzIL5JhJbOFOTk5Fdb/8ccfHXaC9enTp8L6YWFhkmS/p7L2AQAAAAAAAAAA4B/84phE2zZKW7Jq79695dY9cOCAdu3aZa9br149tWzZssL2zWazw3WNGjVcCRcAAMDv7N5dS0uWNNdzz0UoL0+KipI6d5ZGjJASEnwdHQAAAAAAgPP8IhnWvHlzh+v169eXW3fRokX2n00mk3r37l1p+ydPnpRUfKyiyWRSdHS0c4ECAAD4mbS0II0b10c7dtQt9d6aNdLMmVKvXlJystS1qw8CBAAAAAAAcJFfHJPYqVMn+89Wq1XLli3TsWPHyqz7/vvv2+tJUt++fSttf8+ePQ7XjRs3djZUAAAAv7FokXT55ZFlJsJOt2aN1KdPcX0AAAAAAAB/4xc7wxo2bKh27drpt99+kyTl5eXp4YcfVkpKikO9L7/8UmvXrpXJZLInw6644opK29+4caPD9TnnnOOewIH/V/IoTpy5Sq4F1kb1BPr8+dP4jBarr+LxVr+e6CctLUiJiZE6dcpUeWVJp05JiYlW/fe/ZiUkFFVY12jrA8bB2nBNoM+fv43PSPHyOWis9o20NmA8rA/nBfrc+dv4jBSvL2MJhM9CPgfhTXl5eT7r22S1ZY0M7rnnntOECRPsiS6TyaSLL75Yd955p+rVq6cff/xRL7/8sk6dOmV/v0uXLlq3bl2F7RYWFqpevXrKycmR1WpVSEiIMjMzFR4e7qWRwR+lpKSUSsZKxf+4p6am2q+Tk5MVGxvrxcgAAKia8o5GrEybNsc1depqD0QEAAAAAAACWUZGhkaPHm2/3rp1q9q3b++Vvv1iZ5gk3X///Zo+fbr+/vtve0Js6dKlWrp0qb2OLQlm89hjj1Xa7vLly5WdnW2/r2PHjiTCUKn09HStXLnS12EAAOCUXbtqOZUIk6QdO+pq9+5aatky081RAQAAAAAAeIbfJMNq1aqlN954QzfddJMkORyFaGNLaJlMJl1yySW68cYbK233iy++kPS/RFrv3r3dHDkCUVxcXJnPoyu5MwwAACP64YfmLt/fsuVmN0UDAAAAAADgWX6TDJOkxMREZWZm6sEHH9Q///zjsAtMkj051r17d3388ceVtpeTk6OPP/7YIbE2aNAg9weOgJOUlKSkpKRS5du2bVOHDh1KlXfv3l2RkZFeiAxGZzabHY5vZW1UT6DPnz+Nz2ix+ioeb/Xr7n6eey7CpXiOH2+m/v3rlfu+0dYHjIO14ZpAnz9/G5+R4uVz0FjtG2ltwHhYH84L9Lnzt/EZKV5fxhIIn4V8DsKb0tLSfNa3XyXDJGnEiBG66KKL9OKLL+rrr7/W33//Lal4N1inTp00fPhw3XPPPQoNDa20rffee09ZWVn267CwMA0cONBjsePMFRkZqZiYGF+HAQNibbgm0OfPn8ZntFh9FY+3+nW1H1efV5ubG1Kt/o22PmAcrA3XBPr8+dv4jBQvn4PGat9IawPGw/pwXqDPnb+Nz0jx+jKWQPgs5HMQnuTLR1T5XTJMklq3bq1Zs2ZJKt7dlZ2drbp166pmzZrVaqdbt2768ssv7de1atVSWFiYW2MFAAAwmqgo1+6PjnZPHAAAAAAAAN7gl8mw00VFRSnKyW90evXq5eZoAAAAjK9zZ2nNGtfuBwAAAAAA8BdBvg4AAAAA3jVihGv333WXe+IAAAAAAADwBpJhAAAAZ5iEBKlnT+fu7dWr+H4AAAAAAAB/QTIMAADgDPT661J1H5UaFiYlJ3smHgAAAAAAAE8hGQYAAHAG6tpV+uwzKSzMWqX6YWHF9bt29XBgAAAAAAAAbkYyDAAA4Aw1eLD03/+a1abN8Qrr9eolrV5dXB8AAAAAAMDfhPiy81WrVpVZftFFF1W5rieU1T/gCrPZ7OsQYBAl1wJro3oCff78aXxGi9VX8XirX0/206aNWVOnrtPu3bX0ww/NdfTo2crLC1ZUlFUdOxbp9tvz1blzkSQpK8v38cK/sTZcE+jz52/jM1K8fA4aq30jrQ0YD+vDeYE+d/42PiPF68tYAuGzkM9BeFNeXp7P+jZZrdaqnY3jAUFBQTKZTA5lJpNJhYWFVarrCeX1D5wuJSVFKSkppcrNZrNSU1Pt18nJyYqNjfViZAAAAAAAAAAAGE9GRoZGjx5tv966davat2/vlb59ujPMpjr5OB/m7gC79PR0rVy50tdhAAAAAAAAAACAShgiGWbb8VWVRJcnd4eRaENVxcXFqW/fvqXKS+4MAwAAAAAAAADAG3bvrqUlS5prz55aOnUqWGFhFrVokamBA/eqZctMX4fnUz5PhrErDP4oKSlJSUlJpcq3bdumDh06lCrv3r27IiMjvRAZjM5sNmvdunX2a9ZG9QT6/PnT+IwWq6/i8Va/nuzHE20bbX3AOFgbrgn0+fO38RkpXj4HjdW+kdYGjIf14bxAnzt/G5+R4vVlLIHwWcjnoLFs2rRJH3zwgbZs2SKz2azIyEh17NhRw4YNU+fOncu9Ly0tSI89Fqb160unfHbsqKvFi1uoe/dCTZ16SgkJRR4cQcXS0tJ81rdPk2HLly/3SF3AaCIjIxUTE+PrMGBArA3XBPr8+dP4jBarr+LxVr+e7McTbRttfcA4WBuuCfT587fxGSlePgeN1b6R1gaMh/XhvECfO38bn5Hi9WUsgfBZ6MnPwbS0NM2aNUubNm1STk6OoqKi1LlzZ40YMUIJCQn2e9LSpFmzpE2bpJwcKSpK6txZGjFCOq1aQElNTdWDDz6otWvXlnpv3bp1mj17tnr16qXk5GR17drV4f1Fi6TEROnUqYr7WLcuRJdfHqXPPpMGD3Zn9FUXHh7um47l42RYWcfMuaMuAAAAAAAAAADwvYoSPWvWrNHMmTPVq1cv3XPPLM2c2U5lVNOaNdLMmVKvXlJyslQiH+TXFi1apMTERJ2qJJu1Zs0a9enTR5999pkG/382KzW1aokwm1OniuuvXh1Yc1gVQb4OAAAAAAAAAAAABJ7FixerT58+ZSbCTrdmTV3dcUeLMhNhjvWkPn2Kd0MZQVqadN99Uu/e0vnnF//3vvuKy6siNTW1Sokwm1OnTikxMVGpqamSpAcfrHoi7H9tSKNHV++eQEAyDAAAAAAAAAAAuNWuXbt0xx13VCHR00XSZ5KqdoSebXfT/+eDfCI1tXiXWpcuxTvW1qyRtmz53w62Ll2KE2OVxfjggw9WORFmc+rUKY0ePVobNqjS5GF51qypesIuUJAMAwAAAAAAAAAAbvXuu+9WMdHzuqqaCLPx5e6mRYuKd6e5uottw4YNle6YK7/tNXrhhaNO3Wsze7ZLt/sdkmEAAAAAAAAAAMBtdu3apR07dlShZoKkXk714YvdTc4+o6usHWKzXcxGrV6d7dL9mza5dLvfIRkGAAAAAAAAAADc5ocffqhizbtc6sfbu5vc+YyuTS5mo7Kzi1y836Xb/U6IrwPwluPHj2vx4sXavHmzMjMz1aBBA3Xq1EmDBw9WzZo1fR0eAAAAAAAAAABukZYmzZpVvPsnJ0eKipI6d5ZGjJASEjzf/549e6pYs7NL/Xhzd5M7ntF1+tzn5OS4GJFr90dHu9i9n/GrZNjOnTsdrs855xyFhFQ+hOeff17PPfeccnNzS71Xq1YtvfLKKxo+fLjb4gQAAAAAAAAAwNtSU4t3L5WVtFmzRpo5U+rVS0pOlrp29VwcVXtWmCRFudSPN3c3uboLbfZsx2RYVJRrY4+O/lO5uZ2dvr+z87f6Jb85JvHnn3/WeeedZ39dcsklCgqqPPz7779fEyZMkNlsltVqLfU6efKkRowYoUcffdQLowAAAAAAAAAABKq0tDTdd9996t27t84//3z17t1b9913n9K88HCrRYukPn0q3720Zk1xvUWLPBdLWFhYFWv6z+4mV3ehlby/s4vZqIsu2ll5pQrc5doJlX7Hb5JhCxYssCewJGnUqFGVJsO++OILzZw5U5JkMpnKfVmtVr366qt6//33PT4OAAAAAAAAAID/SEuT7rtP6t1bOv/84v/ed5+0adP/vp/etWuXLrnkEnXp0kUzZ87UmjVrtGXLFq1Zs0YzZ85Uly5d1Lt3b6WmpnokxtRUKTGx6s+zOnWquH5ammdSBC1atKhizU0u9ePN3U2unmpYchfbiBEjXGrv8ccHqWdP5+7t1cs7x2Uaid8kw5YvXy6TyWS/vvHGGyusb7Va9e9//7tUWcmXJHtCbNy4cco+054aBwAAAAAAAAAoJTW1OGnQpUvx8YJr1khbtvzvuMG+faM0blwfLVx4QOPHj9f69esrbG/NmjXq06ePFnlgS9aDD1Y9EWZz6pQ0blxVd3BVz8CBA6tYc5ZL/Xhzd5OLpxqW2sWWkJCgnk5ms3r16qWEhAS9/rpU5U14/y8srPiYzDONXzwzzGw2a+vWrfbruLg4tW3btsJ7Fi9erB07dtgTXSaTSZdffrmef/55tW3bVocOHdK0adM0ffp0e5Lt6NGjmj17tsaOHevJ4eAMZDabfR0CDKLkWmBtVE+gz58/jc9osfoqHm/168l+PNG20dYHjIO14ZpAnz9/G5+R4uVz0FjtG2ltwHhYH84L9Lnzt/EZKV5PxbJ4cYjuuCNcp06ZKqy3Y0dd7dgxXNK3kr6ptN1Tp04pMTFR//3vf5VQxa05lY1x48YgrV3rXKZm3boQ7d5dSy1bZpbZdnXZ7m/ZsqXatGmjHTt2VHLHRklrJPWqdl/duxeqVatcZWVV+1antGsXpjVrQl24P19ZWY4Zy+eff16XX355NZ6xVnwE5XPPPaesrCy1bi29/37V1mrxvVa9/36eWrcu9Nq8nS4vL8/7nf4/k9W2PcrANm7cqC5dutiTVomJifrkk08qvGfYsGH68MMP7fd069ZNP//8c6mjFceNG6eXXnrJnjTr2rWr1q1b55mBIGCkpKQoJSWlVLnZbHbY6pycnKzY2FgvRgYAAAAAAADAFbt21db48RcqPz+4GnflSeojaUOVardp00ZTp051JrxS3nrrfC1eXNVjCUu7/PI9uvvuzW6J5XS7du3S+PHjlZ+fX0nNLpJWSwqvctuhoRY999yPatXqpAsRVs/u3bX08MP9nL7/lVdW2JOOp1u/fr1eeumlKsyTFBoaqkcffVTdunVzKN+1q7befbejduyoW+69bdoc18iRW7w6ZyVlZGRo9OjR9uutW7eqffv2XunbL3aGpaenO1xXZXK+/fZbh11hEydO/D/27j0uqjr/H/jrCMIQoKViF800LTUvISAJG6mVbbrubptRu5Vliu6KC9Wa6bc1LWsVd3UtktCAxEu7bRi1+7O11C4u5qAOI3nJpSQN0FTMTS4yjsD8/hjPxMDA3M7M+Zzh9Xw85iHncM7nvD9nPszgvHl/Pg7XGFu0aBHeeOMN1FxOg5aUlKC2thaR/lx5jzTn+PHj2Llzp9phEBERERERERERkcJycka4mQgDrImcTAA/cenosrIylJeXY+DAge6G18axY929PL+b1zE4MmjQIMybN8+FRE8JgGQABXAlIRYS0oR58/b5PakzcOB5DB58rsOEU3sGDz7nMBEGWAt5li5dipycnA4r6QYPHoyZM2di0KBBbb43aNAPWL68COXl3bFjxw04dqwbGhqCERbWiAEDanD33d+2e/3OQhPJsFOnTgGALbF17bXXdnj8gQMHcO7cOVtVWK9evTBx4kSHx4aHh+OnP/0p3nnnHbvzf/IT1160qHPq378/xo4d22Z/68owIiIiIiIiIiIi0o6jR7t7lOywSgQwCtap/5zbsWOHIskwk8ndxJ29hgbfpQlcT/Qcxb33vosPP5wkdHXTzJkH3a4aDAlpwsyZBzs8ZtCgQVi+fDnKy8uxY8cOHDt2DA0NDQgLC8OAAQNw9913uzRWBg48j4EDla/yCwSaSIZduHDBbrtbt44z1bt27bJ9La8VJifGHImJibFLhh09epTJMOrQtGnTMG3atDb7Dx8+jOHDh7fZHx8fj/DwcD9ERqKrr6+3m4qVY8M9gX7/tNQ/0WJVKx5/XdeX1/FF26KNDxIHx4Z3Av3+aa1/IsXL90Gx2hdpbJB4OD48F+j3Tmv9cyfe0tJSbNiwAQcPHkR9fT3Cw8MxYsQIPPbYY4iOjvZrLK74f/9P52VEMwD83qUjz507h/Hjxzs9zlkfr776Cnz7rduB2oSFNbbbtrscxTp+/HjMnDkTpaWl2LhxIw4ePIi6ujpERERgxIgRmDp1qm0sLFkClJbWYePGEBw82AV1dRIiIiwYMaIZU6eaER0dDGvCUR3jxwPXX3/RzTW6LuLee12Lefz48UhJSfE2TGEZjUbVrq2JZFjrxeOCgzsOW67MkSvJxo0b1+Hxffv2tds+f75zlwuS8sLDw50mcalz4tjwTqDfPy31T7RY1YrHX9f15XV80bZo44PEwbHhnUC/f1rrn0jx8n1QrPZFGhskHo4PzwX6vdNa/xzFazAYkJaWhuLi4jbH7927F3l5eUhISEBmZibi4uJ8Gos7vvzS2wiiXT7ywoULHsXauo+xsUCL/JPbBgyoabdtb7Vs74477sAdd9zh9Jw77rA+2gpRLC5vPPggcOONQHo6oNe3f1xCApCZKSEu7gr/BSe4sDDX14VTWttFtATU+gbV1dV1ePyuXbvsKsGSkpI6PF6ns2b75XOctU9EREREREREREREjm3ZsgVJSUkoLr4IIAvA5wC+uPxvFuTKHr1ej6SkJGzZskW1WFvz/qPhSNePjHT92I54W0h0991elJV1UnFxwO7dQEkJkJoKJCYCI0ZY/01Nte7fvdt6HIlBE5VhcuZYTlZ920HN54kTJ3D06FHbsT179nQ6l2Z9fb3ddteuXb0Jl4iIiIiIiIiIiKhTMhgMmDJlGczmTwAkODgiEUAqgN0A0mEylSA5ORlFRUWKVoh5KiLC2xZqXT5SiWkiASAmBhgzBnBQhOdUfHwjBg7kTGmeiomxPkh8mqgMu+GGG+y29+3b1+6xLf+KQJIkJCYmOm3/hx9+AGCdVhFQLiNPRERERERERERE1Jk8+ujbMJt3wHEirKVEAEUAfgaTyYT09HTfB+cC7/NTpS4fOWPGDG8vZvPaa4DOzeXOdDpg+XKT8wOJAoAmkmG33nqr7WuLxYJPPvkE33//vcNj169fbzsOAMaOHeu0/WPHjtltX3PNNZ6GSkRERERERERERNQpbdx4BGVlLwFwdV2gMAAFAGKh1+thNBp9F5yLvJ1yEMhz6aiEhATEKFhSFBcHFBS4nhDT6azHx8Q0KxYDkcg0kQzr3bs3brnlFtt2Q0MD5s6d2+a49957D8XFxXbrhU2aNMlp+/v377fbvvHGG72IloiIiIiIiIiIiMg7RqMRqampSExMxMiRI5GYmIjU1FQhEkbtmTcvFK4nwmRhADIBAHl5riWSfEmectAzuwHsd3qUTqdDZmampxdp1+TJQFERkOCkKC8hwXrc5MmKh0AkLE2sGQYADz/8MBYuXAhJkmCxWLBx40acPHkS06dPR8+ePbFr1y6sWLHC9n1JkhAbG4vBgwd32G5jYyOMRqPtvKCgINx0001+6hURERERERERERHRj44ePYrnntuML79MAPAogN8BqANQCr0+F9nZ2UhISEBmZqYQa2zJSkqA06c9LTJIBDAKpaWlCkbkuddeA5KSAJNbMwg2AHA+1aNOp0NBQYHPnru4OGD3bsBoBPLygNJSoLYWiIy0TgE5YwbXuKLOSTPJsDlz5uDVV1/F2bNnbYmrjz/+GB9//LHtGDkJJnv22Wedtvvpp5+itrbWdt6IESMQFubuXy8QEREREREREREReeef/zyBdet+AqDtrFjWhFEqgN3Q69Nx++23Y/PmzZgsSHmP90VdM1Bbu1aJULwmTzmYnOxaQiwkpAmPPvohDh0Kwt697R/nzyRmTAyTXkQtaWKaRADo3r07Vq9ebduWE2ItH3JCS5Ik3H333XjggQectltYWAjgx0RaYmKibzpARERERERERERE1I5//asZ69Y9AcDZHH2JAIpw8eLdmDJlCgwGgx+ic877oq5oREZGKhCJMlydcnDw4HNYunQXfvGLLti+fTtKSkps01uOGDHCNr1lSUkJdu/eLVQ1H1FnopnKMABITk7G+fPnkZaWhosXL9pVgQHWhBYAxMfH4+9//7vT9urq6vD3v//dllgDgHvuuUf5wImIiIiIiIiIiIjaYTR2wbp1EwHoXDwjDEABzOYkTJ8+HQcOHPBhdK6pq/O2hUhER0crEIlynE05+NBDdfjf/4rszomJiUEMS7KIhKOpZBgApKSk4I477sCf//xn/Otf/8LZs2cBWKvBbr31VjzxxBP43e9+h5CQEKdtvfnmm6ipqbFt63Q6TJgwwWexExEREREREREREbU2Z04zLBZXE2GyMACZOHjwJzAajaonYCIivG2hFjNmzFAiFMW1N+VgTU0zPv3U//EQkfs0lwwDgJtvvhm5ubkArNVdtbW16NGjB0JDQ91qZ/To0Xjvvfds2927d4dO5+6bDhEREREREREREZFnSkqAL7/s5uHZiQBGISMjA++8846SYbktOhrQ6z0//+qrTyEmZopi8RARtaTJZFhLERERiPDwzw4SnE34SkRERERERERERORDeXnetjADRUUvKxGKV1JSgOxsz89fsWKocsEQEbWi+WQYERERERERERERkbeMRiNyc3NRWlqKuro6REREIDo6GikpKT6dgrC01NsWou2WglFLTAwwZgxQXOz+uUOGnMOjj96ifFBERJcxGUZERERERERERESdlsFgQFpaGoodZHH0ej2ys7ORkJCAzMxMxMXFKX79ujpvW4hUIgxFvPYakJQEmEyunxMa2oyNG3v4LigiIgBd1A6AiIiIiIiIiIiISA1btmxBUlISiosvAsgC8DmALy7/mwVgFABrUiwpKQlbtmxRPAYPV4BpoRbdunm65piy4uKAggJAp3PteJ0O2Ly5C3yQYyQishNwlWFNTU04d+4cGhoaAAD9+vVTOSIioL6+Xu0QSBCtxwLHhnsC/f5pqX+ixapWPP66ri+v44u2RRsfJA6ODe8E+v3TWv9Eipfvg2K1L9LYIPFwfHjOF/fOaDRiypRlMJs/AZDg4IhEAKkAdgNIh8lUguTkZGzdulXRaRNvuUUHvT7EixZKMWbMGL9OldjR83HHHcDWrV0wf74Oe/e2//FzfHwjli83ISamGd6ErubPVSC8F/J9kPxJztuoQbJYLBbVrq6AgwcP4v3338dnn32G/fv34/z587bvSZKExsbGds89f/48mpqabNsREREICfHmjYc6i/z8fOTn57fZX19fD4PBYNvOzMxkQpaIiIiIiIiISEBz5mzFiROrAIS5cHQDgGQAH2Dw4MFYvny5YnGUl3fH3LnjvGghBitXPoqBAwcqFZJiysu7Y8eOG3DsWDc0NAQjLKwRAwbU4O67v8XAgeedN0BEAaWiogLp6em27UOHDmHYsGF+ubZmK8NKS0uxcOFCbN261bbP3bxeeno6Nm3aZNueOXMm1qxZo1iMFLiOHz+OnTt3qh0GERERERERERF54NNPa91IhOHycQUAklBWVoLy8nLFkk8DB57H4MHnUFbmybpZu3HDDeeETIQB1r4NHHhA7TCIiLS5ZtjatWuRkJCArVu3wmKx2JJgkiTZHq6YN28eANjaeOedd3Dx4kWfxU2Bo3///hg7dmybhy8WUSUiIiIiIiIiImXl58fC9USYLAxAJgBgx44disYzc+ZBBAdfcvOsBgQF/QFpaWmKxkJEFIg0Vxn28ssvY/HixXYJMMC+KszVZNjw4cNx11132d68zp8/j3//+9/41a9+pXDUFGimTZuGadOmtdl/+PBhDB8+vM3++Ph4hIeH+yEyEl19fT327t1r2+bYcE+g3z8t9U+0WNWKx1/X9eV1fNG2aOODxMGx4Z1Av39a659I8fJ9UKz2RRobJB6OD88pee/27++C8+cjPIwkEcAonDt3DuPHj/ewjbbi4+vxv/+VYPnyWDQ2dnXhjAYEBz+Mt976A+69917F4nCVSGNZzVgC4b2Q74PkT0ajUbVrayoZ9u6779oSYS2TYDfddBMmTpyIAQMG4K9//SuqqqpcbvOhhx7Cjh07bO199NFHTIaR4sLDw9GtWze1wyABcWx4J9Dvn5b6J1qsasXjr+v68jq+aFu08UHi4NjwTqDfP631T6R4+T4oVvsijQ0ST2cYH0ajEbm5uSgtLUVdXR0iIiIQHR2NlJQUxMTEeNyuN/fuH//w+LKXzcCFC2sVf+5Gjz6NjIzdeO21m/Dtt9d1cORujBiRizff/KMwsxSJNJbVjCUQ3gv5Pki+FBbmbkWucjSTDLtw4QJ+//vf2xJhFosF3bp1w+uvv46HH37Ydlx+fr5bybBf/epX+N3vfofm5mZYLBZ8/PHHvgifiIiIiIiIiIio0zAYDEhLS0NxcXGb7+n1emRnZyMhIQGZmZl+T+iUlnrbQjQiIyMViKStQYN+wKuv7sNVV92F1asbUFRUg5oaC4BadOv2DZKSvsaCBfcgJuZNn1yfiChQaSYZtnr1apw+fdqWCIuMjMR//vMfjBw50qt2e/TogaFDh+Lw4cMAgG+++QY1NTXMVhMREREREREREXlgy5YtSE5Ohslk6vA4vV6PpKQkFBQUYPLkyX6KDqir87aFSERHRysQSfuio5vxzjtRAKJa7B3l02sSEQWyLmoH4KqNGzfaEmGSJGHVqlVeJ8JksbGxdmuOHTlyRJF2iYiIiIiIiIiIOhODwdAiETYKQBaAzwF8cfnfLLRM6phMJiQnJ8NgMPgtxghPlwuzqcWMGTOUCIWIiPxEE8mwU6dO2Sq3AKBfv36YNm2aYu3fcsstdtvl5eWKtU1ERERERERERNRZpKWlwWQaBmA3ACOAVACJAEZe/jf18v7PAcQCsCbE0tPT/Rajt0VdV199yqv1zoiIyP80kQzbt2+f7WtJkjBx4kR06aJc6FdddZXd9g8//KBY20RERERERERERJ1BSUkJiot7AigCkODk6MTLx/0MgHXKRKPR6NsAL0tJ8e78FSuGKhMIERH5jSaSYWfOnAEA21SGo0YpOz/ulVdeCcCaaAOA2tpaRdsnIiIiIiIiIiIKdMuWbQdQACDMxTPCLh9vrRDLy8vzTWCtxMQAY8Z4du6QIefw6KO3OD+QiIiEoolk2NmzZ+22e/TooWj7Fy9etNtWsuqMiIiIiIiIiIioM/joo8lwPREmCwOQCQAoLS1VOKL2vfYaoNO5d05oaDM2blT2c0kiIvIPTWR9QkND7batC3Aq59y5cwB+rDzr2bOnou0TEREREREREREFspISoK5uuIdnJwIY5dfZmuLigIIC1xNiOh2weXMXxMX5Ni4iIvINTSTDoqKi7LZbV4p56/Dhw3bbTIYRERERERERERG5zvsZDmcgMjJSiVBcNnkyUFQEJDhZ3iwhwXrc5Mn+iYuIiJQXrHYArrj66qsB/Lim1/79+xVt/7PPPoMkSbbKsIEDByraPhERESmoshKQJKBvX7UjISIiIiLyC6PRiNzcXJSWlqKurg4RERGIjo5GSkoKYmJi1A4PAOD9DIfRiI7+UoFI3BMXB+zeDRiN1oReaSlQWwtERgLR0cCMGdY1xoiISNs0kQwbPXo0goKC0NzcDIvFgo8//hgWi8WWHPPGrl278NVXX9na6tGjB4YP97Skm4iIiHwuI8OaDFu9Wu1IiIiIiIh8ymAwYPr013Dw4G0AHgXwOwB1AEqh1+ciOzsbCQkJyMzMRJzK8/fV1XnbQiRmzJihRCgeiYlh0ouIKJBpYprE7t27Iz4+3la5dfLkSbz33nuKtL1o0SIAsCXXxo0bp0i7RERE5AOVlUBuLpCTA1RVqR0NEREREZHPrFpVhPj4Jhw8uB5AKqzrao28/G8qACOAz6HXm5GUlIQtW7aoGC0QEeHd+ZGREKbKjYiIAo8mkmEAMGXKFACwTWf49NNPe72o5gsvvGCbIlH2xBNPeNUmERER+VBGBmA2Wx8ZGWpHQ0RERETkE6tWfY0//CEOFsttTo5MBFAEk+kuJCcnw2Aw+CM8h6KjvTv/pz+9RpE4iIiIHNFMMiw1NRXXXnutbbuqqgqTJk1CTU2N2201Nzfj6aefxksvvWRLrkmShFtvvRWTJk1SMmwiIiJSilwVJmN1GBEREREFIIMBmDu3H4AwF88IA1AAk2kY0tPTfRhZx1JSvDv///6vtzKBEBEROaCZZJhOp8OLL75oS1xZLBbs3r0bw4YNw6ZNm2A2m522UV1djbVr12Lw4MHIzMy0TbsIWCvOMvgX5kREROKSq8JkrA4jIiIiogA0fXodLJZQN88KA5AJvV4Po9Hoi7CciokBxozx7NyEBK7XRUREvqWZZBgApKSkYPr06XYJsRMnTuDxxx9H7969ceedd6KiosIuyfXwww/j3nvvxdChQ3HNNdcgNTUV5eXldm1IkoTnnnsO99xzj4q9IyIiona1rgqTsTqMiIiIiAJISQlw8KCni28lAhiFvLw8JUNyy2uvATqde+fodEBmpm/iISIikmkqGQYAa9aswcSJE21JLDmhVVNTg507d+KHH36wHWuxWPCPf/wD27dvR1lZGSwWi915sl//+tdYsmSJCr0hIiIil7SuCpOxOoyIiIiIAoj3eawZKC0tVSASz8TFAQUFrifEdDrr8XFxvo2LiIhIc8mw4OBgbNmyBc8//7xdZZec3GpZFSZvtzym9XEvvPAC3nrrLf92goiIiFzXXlWYLCcH0okT/ouHiIiIiMhHvM9jRaO2tlaBSDw3eTJQVGSd+rAjCQnW4yZP9k9cRETUuWkuGQZY1/d68cUXUVRUZKsSc5T0cpQAkx/jxo1DUVERFi1apHJviIiIqEPtVYXJzGaErlrlv3iIiIiISNOMRiNSU1ORmJiIkSNHIjExEampqaqttdVSXZ23LUQiMjJSiVC8EhcH7N5tnfYxNRVITARGjLD+m5pq3b97NyvCiIjIf4LVDsAbCQkJ+OCDD3D48GFs3rwZO3fuRHFxMUwmU5tjJUlCdHQ0JkyYgF/+8pdITExUIWIiIiJyi7OqsMu6rl8P3W23wdSrlx+CIiIiIiItMhgMSEtLQ3FxcZvv6fV6ZGdnIyEhAZmZmYhTKUsT4elyYTa1iI6OViASZcTEWB9ERERq03QyTDZs2DAMGzYMANDc3Izvv/8e33//Pf73v/8hLCwMvXr1QlRUFEJDQ1WOlIiIiNzirCrsMslsxk2FhTg4a5YfgiIiIiIirdmyZQuSk5NhMg0FkAUgGkAEgDoApQByAeyHXq9HUlISCgoKMFmF+fuiowG93psWSjFjxgyFoiEiIgocmpwmsSNdunRBVFQUhgwZgoSEBERHR6Nv375MhBEREWmNi1Vhshu2bYPu7FkfBkREREREWmQwGDBlyjKYTJ8AMAJIBZAIYOTlf1Mv7/8cQCxMJhOSk5NhMBj8HmtKinfnjxixDzEsxSIiImoj4JJhREREFCBcrAqTBTU24qbCQh8GRERERERa9Oijb8Ns3gEgwcmRiQCKAPwMJpMJ6enpvg+ulZgYYMwYz86VpGK8+ebvlQ2IiIgoQATENIlEoquvr1c7BBJE67HAseGeQL9/Wuqfr2OVqqoQkZsLyc3zbti2DV/ff7/f7p2/njNfXscXbWtpLJN/cWx4J9Dvn9b6J1K8asUSCO+DvmhfpLFBwN///jXKyl4CEObiGWEACgAkQa/X4z//+Y+ia3C5Mj6WLeuCiRPDYTK589twA/70p1rcfPNtqKmp8TJKMQX6z5bW+idSvGrGEgjvhXwfJH9qaGhQ7dqSxWKxqHZ1AdXX1yM8PFztMEhw+fn5yM/Pb7O/vr7ebhqFzMxM9OvXz4+REREFhpFr12LA1q0enfvNpElcO4yIiIiIAACPP34zzp8f6sGZuwH8BBMnTsRvf/tbpcNyat++q/GXv4yG2Rzk9FhJMuGJJ7biF7/gBFBERCS2iooKu8rrQ4cOYdiwYX65NivDLmtoaEBmZiZWrlyJM2fOqB0OCe748ePYuXOn2mEQEQUkXXU1+m3f7vH5cnWYqVcvBaMiIiIiovLycmzfvh3Hjh2DyWSCTqfDgAEDMGHCBAwcOFDt8No4erS7h4kwwDpl4igcO3ZMyZBcNnr0aSxdugs5OSNQVtaj3eNuuOEk0tK+xqBBTIQRERF1pNMnwy5evIisrCz8+c9/RnV1tdrhkEb0798fY8eObbO/dWUYERG57+bCQgQ1Nnp8vrx2GKvDiIiIiJRx9OhR5OTkoKysrM33ysrK8OGHH2Lw4MGYOXMmBg0apEKEju3YcYOXLcxAQ8NfFInFE4MG/YDly4tQXt4dO3bcgGPHuqGhIRhhYY0YMKAGd9/9LQYOPK9afERERFrSaadJNJvNWLNmDZYvX45Tp05Bvg2SJKGpqUnl6EirDh8+jOHDh9u25WkS4+PjOf0mAbAmTPfu3Wvb5thwT6DfPy31z1exSlVViBg1CpLZ7FU7lpAQ1JWWwtKnj9cxdcRfz5kvr+OLtrU0lsm/ODa8E+j3T2v9EyletWIJhPdBX7Qv0thQwocffojHH38cJtNQACkAogFEAKgDUAogF8B+AIBOp8P69etx7733qhNsKxMmXIG9e735O/DPcdttc7Ft2zbFYgq08eFPgX7vtNY/keJVM5ZAeC/k+yD5k9FoxPjx423bnCbRhy5duoScnBwsW7YMJ0+etEuCddK8IPlBeHg4unXrpnYYJCCODe8E+v3TUv8Ui/XGG4GqKrdPq62txa5du2zbt99+OyKvuw7Q6byPyQ3+es58eR1ftK2lsUz+xbHhnUC/f1rrn0jxqhVLILwP+qJ9kcaGuwwGA6ZOfRVm8ycAEhwckQggFdb1tdJhMpXg8ccfR1FREeLi4vwaqyMNDd62EInY2FhNjbfOJNDvndb6J1K8asYSCO+FfB8kXwoLC1Pt2sInw86fP4///ve/OHv2LGpqahAZGYmBAwdi6FD35nxuampCXl4eli5disrKSrskGBEREQlCp/MogWUJDYW5e/cft3v18nsijIiIiCjQPPro2zCbdwBw9sFVIoAiAMkwmT5Aeno6du/e7fsAnYiI8LaFWsyYMUOJUIiIiEhlQibDmpqasHbtWmzcuBEGgwHNzc1tjrnqqqvw8MMPY8GCBbjuuus6bK+goADPPfccvvnmG4dJMHnfyJEj8cILLyjXESIiIiIiIiIiDdq48QjKyl6C80SYLAxAAYAk6PV6GI1GxMTE+C5AF0RHA3q95+dfffUpxMRMUSweIiIiUk8XtQNo7cCBAxg6dCjS0tKwd+9eNDU1wWKxtHmcO3cOWVlZGDJkCP7xj384bKuiogITJkzAr3/9a5SXl8NisUCSJFsiTG5r2LBheOedd1BaWor77rvPj70lIiIiIiIiIhLPvHmhcD0RJgsDkAkAyMvLUzokt6WkeHf+ihXuzUpERERE4hIqGVZcXIxx48bh6NGjtkSVnLxy9LBYLKirq8PDDz/cJiH2wQcf4NZbb8Unn3zSJgkGWBNhQ4YMwd///nccOHAADzzwgL+7S0REREREREQknJIS4PTpGz08OxHAKJSWlioYkWdiYoAxYzw7d8iQc3j00VuUDYiIiIhUI0wyrL6+Hr/5zW/www8/2CW8OtIyKZaSkoITJ04AAN5++2386le/wvnz522JMJnFYsGgQYOwceNGHD58GA899BDXDSMiIiIiIiIiusz7oq4ZqK2tVSIUr732mvtLyYaGNmPjxh6+CYiIiIhUIUwy7KWXXsK3337bJjElV4hFRkbi2muvRVhYmG1fSxcuXMBLL72EQ4cOYdq0aWhsbGwzJeKAAQOQn5+PI0eO4JFHHmESjIiIiIiIiIh8zmg0IjU1FYmJiRg5ciQSExORmpoKo9GodmgOeV/UFY3IyEgFIvFeXBxQUOB6QkynAzZv7oK4ON/GRURERP4lRDLs0qVLePPNNx1OY7hhwwacOXMGP/zwA6qqqlBXV4ejR48iIyMDvXr1sqv8evvtt/HUU0/BbDbbJcEiIyPxyiuv4MiRI3jsscfQpYsQ3SYiIiIiIiKiAHb06FEkJMxBbGwxsrMfhV6/BgcProFe/yiys4sRGxuLxMREGAwGtUO1U1fnbQuRiI6OViASZUyeDBQVAQkJHR+XkGA9bvJk/8RFRERE/hOsdgAA8OGHH+Ls2bO2KQ8lScKUKVOwadMmhIaGtjn+xhtvxLPPPoupU6fi3nvvxaFDhwAANTU1+PTTT23tAMD48eOxYcMG9OnTx699IiIiIiIiIqLO65//PIH8/J/AYpnr4LuJAFIB7IZen46kpCQUFBRgsiBZmIgIb1uoxYwZM5QIRTFxccDu3YDRaJ0GsrQUqK0FIiOB6GhgxgzrGmNEREQUmIRIhun1ervtgQMHYsOGDQ4TYS1de+21KCwsxK233oqGhga7JJgkSfj1r3+NDRs2ICgoyGexExEREREREZFYjEYjcnNzUVpairq6OkRERCA6OhopKSmI8UPG41//asa6dU8ACHNyZCKAIphMyUhOTkZRURHiBJifLzoaaPVRjVuuvvoUYmKmKBaPkmJimPQiIiLqjISYL3D//v0AYKsKmzt3LsLCnP3CaDVw4EA8/PDDdkkwABgyZAjy8/OZCCMiIiIiIiLqJAwGA0aOfFzVaQmNxi5Yt24inCfCZGEACmAyDUN6errP4nJHSop3569YMVSZQIiIiIgUIkQyrLy83G69sJ///OdunX/ffffZvpYTagsWLEDXrl2VCpGIiIiIiIiIBLZqVRHi45tw8OB6WKcgTAQwEj9OSWgE8Dn0ejOSkpKwZcsWn8QxZ04zLBadm2eFAciEXq+H0Wj0RVhuiYkBxozx7NwhQ87h0UdvUTYgIiIiIi8JkQw7f/687euePXviuuuuc+t8R4uyuptQIyIiIiIiIiJtWrXqa/zhD3GwWG5zcqQ8LeFdSE5OVrxCrKQE+PLLbh6enQhgFPLy8pQMyWOvvQbo3MzphYY2Y+PGHr4JiIiIiMgLQiTDampqbF/36OH+L009e/a027722mtx5ZVXehsWEREREREREV1mNBqRmpqKxMREjBw5EhMmTMCaNWtQXl6ualwGAzB3bj+IMC2h93msGSgtLVUgEu/FxQEFBa4nxHQ6YPPmLhBgyTMiIiKiNoLVDgAALl68aJsm8YorrnD7/NDQULvtq666SpG4iIiIiIiIiDq7TZu+xDPPHMHp09cC+B2AOgClAHIBfIgPP/wQgwcPxpo1azBu3Di/xzd9eh0slgg3z5KnJfyJoskn75uKRm3tWgUiUcbkyUBREZCeDuj17R+XkABkZoKJMCIiIhKWEMkwpXGtMCIiIiIiIiLvGAzAo4/+D2VltwBovQaUvA7XbgDpKCsrwcSJE1FQUIDJkyf7LcaSEuDgQXcTYTLrtIQbN25ULOa6Om9biERkZKQSoSgmLg7YvRswGq2Vb6WlQG0tEBkJREcDM2ZY1xgjIiIiEllAJsOIiIiIiIiIRGM0AsuWVaOoqBa1tc0A6hAZ+Q2Sksrwf//3U8QIlFHYsgV44IFmXLzobOYV6xpcQDJMpg+QnJyMoqIixPmpREiJaQkPHlQuGRbhaV7OptbhuugiiIlh0ouIiIi0S4g1w4iIiIiIiMh/Wq/9lJiYiNTUVBiNRrVDc4tW+mEwACNH1iE2Fti8OQqnT9+ICxcG4cKFaJw+fT82b/4/xMaaMHLkdBgMBrXDhcEAJCcDFy+6+pGBdQ0uIBYmk0nxdbg6osS0hHXel3P92Fq0ty2UYsaMGQpEQkREREQtMRlGRERERETUSRgMBiQkJCA2NhbZ2dnQ6/U4ePAg9Ho9srOzERsbi8TERCESMh0xGAwYOfJxxMYWIzv7Uej1a3Dw4Bro9Y8iO7tYqH5s2QL85CdNLkzll4iDB7OQmLgUW7Zs8Uts7UlLA0wmd8+yrsEFAHq93m8JSSWmJYzwvpzLJiXFu/NHjNgnVIUgERERUaBgMoyIiIiIiKgT2LJlC5KSklBcfBFAFoDPAXxx+d8sAKMAWBMZSUlJqidk2rNqVRHi45tw8OB6WNesSgQwEj+uYWUE8Dn0erPq/TAYrFMNms1BLp4RhkuX3sKUKctUS+SVlADFxZ6ebV2DCwDyvJ+/0CVKTEs4YsQIJUIBYJ1GcPToRo/OlaRivPnm7xWLhYiIiIh+JNyaYUePHsWdd96pWhuSJOHjjz/26vpERERERBSYjEYjcnNzUVpairq6OkRERCA6OhopKSlCV3MYDAZMmbIMZvMnABIcHCEnknYDSIfJVOL3tZ9csWrV1/jDH+JgrULqiHUdK5MpWdV+pKW5M9WgLAxm81+Qnp6O3bt3+ySujiixBhfwe5R6P3+hS6KjAb3emxZKMXXqVPzvf/9TKCLgz3824ac/DXMjCQoADVi58hLi4sYoFgcRERER/Ui4ZFh9fT127tzp0bkWi8WrNiwWCyRJ8ujaREREREQUuAwGA6ZPfw0HD94G4FEAvwNQB6AUen0usrOzkZCQgMzMTKGSR7JHH30bZvMOuJpEApJhMn2gWkLGEYMBmDu3H4BQF8+wrmNlMiWp0g9vK6z0ehOMRqPfk6xKrMEFALW1td425JKUFCA72/PzR4zYh+joqfj0008Viykmphnz5u3DX/4y2qWEmCRdxMqVVXj66STFYiAiIiIie8JNk2ixWDx6eNsGERERERGRI1qals+RjRuPoKzsJThPhMmsSSQg1q9rPzkzfXodLBZXE2Ey6zpWavRDiQorf0012JISa3ABQGRkpNexuCImBhjjYTGVL6clHD36NJYu3YXBg891eNzIkXXYuzcUTz99k0/iICIiIiIroZJhkiSp9iAiIiIiImpNnpbPYrnNyZHytHx3ITk5WbX1nhyZNy8UrifCZNYkEuC/tZ86UlICHDzo6eJQ1nWs/N0PJSqs/DXVYEtKrMEFANHR0d425LLXXgN0OnfPkqcl9F0l56BBP2D58iLs3FmH1FQgMREYMcL6b2qqdVx/8UUEBCwmJSIiIgo4wkyTyOosak91dTUMBgP27dtn+/fUqVO2769btw7Tpk1TL0AiIiIicspoNOL111/Hrl27YDKZoNPpcPvttyM1NVXYtba0Ni2fIyUlwOnTN3p4tjWJpEZCpjUlqqxKS/+mRCguU6LCyl9TDbakxBpcADBjxgwFonFNXBxQUAAkJwMmk/Pj/T0tYXR0M+64wy+XIiIiIqJ2CJEMO3bsmNohkIBOnTqFMWPG4Ntvv1U7FCIiIiLykMFgQFpaGoodLJ5UVlaGvLw8Ydfask7L526ZjDwt309UWe+pNSWSSLW1a5UIxStKVFn5ux9KVFj5a6rBlrxdgwuw/kz7e+xPngwUFQHp6R0n80aOrENeXgTi4jgtIREREVFnIkQy7IYbblA7BBKQyWRiIoyIiIhIw1555T945pkjaGpaCSACQB2sVSO5APbbjtPr9UhKSkJBQQEmT56sSqytKTUtn9rJMCWSSGokZFpTosrK3/1QosLKn1MNyuQ1uBzkr12wGzrdEWRmFikdlkvi4oDduwGj0ZoILi0FamuByEjr8zFjBhAT43WWkoiIiIg0SIhkGJEzUVFRiI2NRVxcHEaPHo1f/vKXaodERERERO0wGKxVVQcP3gGg9dxgiQBSAewGkA6gBID1D6GSk5NRVFQkRIWYFqflc0SJJJIaCZnWlKiy8nc/lKiwmjEjV6lw3PLaa0BSkmtTDv6oASEh81BQUKD6z3BMjPVBRERERCRjMoyE1aNHDxQUFGD06NGsHiQiIiLSiC1b5HV7nGUvEgEUAUgG8AEAa0JMlLW2tDgtnyNKJJH8ufZTe5SosvJ3P7ytsEpI0KlWWejuGlxAA/r0eRqbNv0J48aN83F0RERERETu66J2AETt6datGx544AEmwoiICIB1yqPUVCAxERg50vpvaqp1P1Gg0Po4Nxjc+fAcsK6vVQAg1rZHr9fDKECHtTgtnyPeFkNdffUp1ad6BKxVVt4YMWKfKv147TUgNLTZzbOsFVaZmZk+iclV8hpcCQkdH3fllV/iqacKkZU1UYixQkRERETkCCvDiIiISGgGA5CW5vgv6/V66xRU8fFX4MEHr8SgQT/4PT4iJbgyzhMSgMxMa8WGqNLS3J1WDbAmxDIB/MS2R4S1trQ4LZ8j3k7Vt2LFUOWC8YI3VVaSVIw33/y98kG5IC4O2Ly5C6ZMaYLZHOTCGQ3o2vURvPvu/6k+1SDgfA2uhx6qw//+9zWsawISEREREYmLyTDyWHV1Nfbt24fy8nLU1NSga9eu6NmzJ2655RbExcWha9euaodIREQa9+N0ax0ft3dvMEpLb8e8efswevRp/wRHwjEajcjNzUVpaSnq6uoQERGB6OhopKSkqJ5Y6Yir41yvt67hU1BgrdgQTUmJp9PBAdYpE0cB2A8AKPV+jkKvaXFaPke8SSINGXIOjz56i/JBecjTdaxWrryEuLgxvgrLqcmTgc8/D7q8jl5HSaPdGDEiF2+++ZwQibCW2luDq6amGZ9+6v94iIiIiIjcxWSYBp07dw4Gg8H2KCkpQUVFRZvjLBaLT66/efNmvPrqq/j888/bvUZkZCQefPBBPPvss7j55pt9EgcREQU2d6dbM5uD8Je/jMbSpbswfrxvYyOxGAwGpKWlodjBp/16vR7Z2dlISEhAZmamcB8wuzvOTSbggQeasWtXF+EqxPLyvG1hBgBr9U5tba23jXnN24oq67R8c5QLyAueJJFCQ5uxcWMP3wXlAXfXsZKki1i5sgpPP53k++CciIsDDhyIgNEIZGRUo6ioBjU1FgC16NbtGyQlfY0FC+5BTMybaodKRERERBSQmAzTgEOHDuGDDz5ASUkJDAYDjh07pkocJ06cwCOPPIKdO3c6Pba2thZ5eXnYuHEjFi5ciIULF0KSJD9ESUREgcKT6dbM5iDk5IzAzJm+iYnEs2XLFiQnJ8PkZLDo9XokJSWhoKAAkwUqq/JknF+82AVTp57DkSNiJSq8L+aKtn0lwlpbWp2WzxF3k0g6HVBQIF7CFfhxHav09I4r90aOrENeXgTi4m7yX3AuiIkB3nknCkBUi72j1AqHiIiIiKjT6KJ2AORcbm4uFixYgIKCAtUSYV999RVGjx7tUiKsJbPZjEWLFuGRRx5BU1OTj6IjIqJA4810a2VlPVBayl9xOgODweBSIkxmMpmQnJwMg8Hg48hc4804/+9/e2DTpi+VDchLdXXetvBjAkyEtbYAa0WVTufuWfK0fGJlkuQkUkJCx8clJFiPEyhn3Ia8jlVJCZCaCiQmAiNGWP9NTbXu/+KLCCGTeUREREREpA5WhpFT33//PSZMmIDvvvuuzfdiY2Pxy1/+EgMGDEBDQwO++uor/O1vf8PJkyftjvv73/+O3r1745VXXvFT1EREpGXeTre2cWMI7rhDmVgUUVkJSBLQt6/akQSUtLQ0lxNhMpPJhPT0dOzevdtHUbnO23H+zDNHhFrPKaKjpZBc8uPUiCKstQVoe1o+R+QkktFoHX+lpUBtLRAZaV0jbcYMx+tCiaq9dayIiIiIiIhaYzJMw0JCQjB8+HDExcXhnXfewQ8//OCT68yaNavNmmSRkZHYtGkTfvGLX7Q5funSpVi6dCleeOEFu/2vvvoqfvrTn2LixIk+iZOIiAKHt9OtHTwoWGVYRoY1GbZ6tdqRBIySkhKHa4S5Qq/Xw2g0IkblT9G9HeenT18jRD9k0dEdT1vnXCkAICEhQZg+Adqfls8RJpGIiIiIiKizYTJMI4KDg3HLLbcgLi7O9rj11lsREhICAPjoo498kgzbvn07CgsL7faFhITgk08+aXfql65du2Lx4sW48sor8dRTT9l9Lz09HUeOHEFwMIceERG1z9vp1urqBFqnsrISyM21fr1gAavDFJLnZVlVXl6e6gkXJaYVzMtbq3o/ZCkpQHa2Ny3kQafTITMzU6mQFONaRZXXpXFERERERETkI8xIaMD8+fOxbNkyhIWF+f3aL730Upt9ixcvdmkNhCeffBIffPABtm/fbtt39OhR/O1vf8Njjz2maJxERBRYvJ1uLSLCokwgSsjIAMzmH79mdZgiSr0sq/L2fCUoMa2gCP2QxcQAY8Z4ug7abuh0R1BQUCDcWlstsaKKiIiIiIhImwSbQ4gcufbaa1VJhB0+fBhFRUV2+3r16oVnnnnG5TaWLVvWZl+2d38yTEREnUB0tHfnjxjRrEgcXmtZFQYAOTlAVZV68QSQOi/Lqmpra50f5GPejnOgVIh+tPTaa4BO5+5ZDRgxIhdFRUWYPHmyL8IiIiIiIiKiTo7JMGrX22+/3WbfE088YZua0RWxsbGIjY2121dcXIxjx455HR8REQWulBTvzp861axMIN5qWRUGWL/OyFAvngAS4WVZVWRkpEKReM7bcQ7kCdGPluLigIIC1xNiQUFmrFp1AgcOvCl0RRgRERERERFpG5Nh1K4PP/ywzb4HHnjA7XYcneOobSIiIpk83ZonBg8+h+hoASrDWleFyVgdpohoL8uqvD1fCTExwNVXf+Ph2bsB7BeiH61NngwUFQEJCR0fN3jwOezYYcZTTw3yT2BERERERETUaTEZRg7V19fDaDTa7bviiis8WqA9KSmpzb7W0y8SERG15sl0ayEhTZg586BvAnJX66owmeDVYVJVlSaSdSlellXNmDFDoUi8s2KFGUCDm2c1AEgHIE4/WouLA3bvBkpKgNRUIDERGDECuO22RkyceAwrV36G5cuLEBMjQOKaiIiIiIiIAh6TYeRQaWkpmpvtP5yIi4tDcHCw222NHj0aXbt2tdtXUlLiVXxERBT43J1uLSSkCfPm7cOgQT/4NC6XtFcVJhO4Oix01Sqhk3WymJgYjPGwfDAhIcGjP/DxhUcfHYLBg5+H6wmxBgDJAEqE6kd7YmKArCzg88+BAweAbdsu4Le/PYCBA8+rHRoRERERERF1IkyGkUP//e9/2+wbNMizKWxCQkLQt29fu33l5eVobGz0qD0iIuo8XJ1uLT6+EUuX7sLo0af9E5gz7VWFyQStDtNVV6Prhg1CJ+taeu2116Bzs3xQp9MhMzPTRxF5ZtOmXyMk5G5Ypz7syG4ASQA+ELIfRERERERERKJiMowcOn78eJt9N9xwg8ft9evXz267qakJFRUVHrdHRESdR3vTrSUmWrdLSoDt2y+IUREGOK8KkwmYcLq5sBCS2Sxssq61uLg4FBQUuJwQ0+l0KCgoQFxcnI8jc09cXBzefff/oNPdBSAGQBaAzwEcuPxv1uX9PwFQImw/iIiIiIiIiETl/px3KlmyZInt62uuuQazZs1SrO033ngDp06dsm0vWrRIsba1quX9kF1//fUet+fo3NOnT+PGG2/0uE1fO3PmDKqrq9065+jRow7319fXKxESBYDWY4Fjwz2Bfv+01D81Yh00CFi2TJx42ruubskShHRUFSYzm2FesgSmFSs8uo5S5LZ01dXot327bb8lJwd1c+bA0qePx222t62kO+64A1u3bsX8+fOxd+/edo+Lj4/H8uXLERMTg5qaGp/F4yn7fvy+3eNE74czWnqdE1Gg3z+t9U+keEV6H9TidZRuX6SxQeLh+PBcoN87rfVPpHjVjCUQ3gv5Pkj+1NDg7prZypEsFotFtau7oUuXLpAkCQBw6623wmg0Ktb2qFGjcODAAdt2U1OTYm37S//+/fHtt9/a7fPmqZ0yZQoKCwvt9r3zzjtITk72qL3Zs2djzZo1dvv+3//7f5g8eXKH582cORMbN25ss//ixYu2r4ODgxEUFNTmmLKyMq+q2V544QW8+OKLHp8PAJmZmW2q4oiIKHDpqqtx9+zZCHJxKuCm4GDsWLMGpl69fByZcyPXrsWArVthBJALoBTAuchI4LrrMGDAAEyYMAEDBw5UN0gnysvLsWPHDhw7dgwNDQ0ICwvDgAEDcPfddwsfe0uB0g8iIiIiIiKilioqKpCenm7bPnToEIYNG+aXa2umMkzmq9yd3K6ccOvsHGXsw8LCPG7P0bkXLlxwet6lS5fsEl+ONDY2Olx/TCN5XiIiCiA3Fxa6nAgDgKDGRtxUWIiDCla8e0JXXY0z27bhYQDFLb9RWwuUlaGsrAwffvghBg8ejJkzZ3q8jqivDRw4MCCSRYHSDyIiIiIiIiJRcM2wy5gEs3fp0qU2+9xdoL4lR8kwsytTSBEREWlE62kGXXXDtm3QnT3rg4hcV7lmDcY1NdknwhwoKyvDc889h3379vklLiIiIiIiIiIiJWiuMozU403C0NG5rlRu5efnIz8/3+PreiM1NdXtaSGPHj2K++67r83++Ph4hIeHKxQZaVl9fb3dmjYcG+4J9Punpf6JFqta8bS8rrtVYbKgxkaM37Onw7XDfNk//fvvI62kBCYXjzebzVi5ciW2bt2KmJgYh8eINj5IHBwb3gn0+6e1/okUrwjvg768rq+vo3T7Io0NEg/Hh+cC/d5prX8ixatmLIHwXsj3QfInJZe/cheTYbBfIyw4mLcEALp27dpmnzeL2zk6NyQkxOP2/KF3797o3bu3Im2Fh4ejW7duirRFgYVjwzuBfv+01D/RYvV3PJ5WhclC1q9HyKJFQN++Lh2vZP8Wz5vnciJMZjKZ8Nxzz2H37t0uHS/a+CBxcGx4J9Dvn9b6J1K8asXir+v6+jpKty/S2CDxcHx4LtDvndb6J1K8asYSCO+FfB8kX/JmKSZvcZpEAOfPn7d9HRERoWIk4rjiiiva7FM6Gca/CCAiokDhaVWYjdkMZGQoF5CLSj74AHvOnPHoXL1er+pfdBERERERERERuarTl0HV1NSgqqrKtn3llVeqF4xAevbs2WZfXV2dx+05OtfRNQJVfX292iGQIFqPBY4N9wT6/dNS/0SLVa146uvrva4Kk1lyclA3Zw4sffo4vE5H2556Y948r87Pzs7GypUr2+wXbXyQODg2vBPo909r/RMpXjXfB/1xXV9fR+n2RRobJB6OD88F+r3TWv9EilfNWALhvZDvg+RP3hTceEuyuLJwkwC6dOkCSZJgsVgQHR2t2F8iv/LKK/jDH/5gW9Pqpz/9Kf79738r0rY/9e/fH99++63dPm+e2oULF+JPf/qT3b4lS5bg+eef96i98ePH47PPPrPbV15ejhtvvNHTEFXV3lpm9fX1MBgMtu3MzEz069fPj5EREZG/dTGbEazQL3ONYWFo9tM0wrrqarwwcyaKvWhjyJAhyFChoo2IiIiIiIiItKeiogLp6em27UOHDmHYsGF+ubYwlWEVFRUuH2s2m1FZWelRsqepqQl1dXX45ptv8O9//xvr1q2zJdkkScKoUaPcbjMQDRgwoM2+1sk2d7R+foOCgjSdJDp+/Dh27typdhhERCSA5pAQmAVfB9ORmwsL4e3f56n5F11ERERERERERK4SJhnWv39/W3VWe+Tk15EjR9C/f39FrisnwWTJycmKtKt1gwcPbrPv6NGjHrUlJy9bGjhwIIKDhRl+buvfvz/Gjh3bZn/ryjAiIiIRyVM7ertSqpoL3xIRERERERERuUqobISrlV5KzuwoJ8IkScKECRMQHR2tWNtaNmrUKHTp0gXNzc22fQaDAY2NjW4nsQwGAy5dumS3LyYmRpE41TJt2jRMmzatzf7Dhw9j+PDhbfbHx8cjPDzcD5GR6Orr67F3717bNseGewL9/mmpf6LFqlY8/rqu0tfRzZ2LoMZGRAPQexHX7bffjvHjx7fZL9r4IHFwbHgn0O+f1vonUrx8HxSrfZHGBomH48NzgX7vtNY/keJVM5ZAeC/k+yD5k1LLX3lCqGRYR5VhLRNgzirI3GWxWDBs2DCsW7dO0Xa1LDw8HKNGjUJJSYltX319Pfbv34/Ro0e71dauXbva7Lvjjju8jlFLwsPD0a1bN7XDIAFxbHgn0O+flvonWqxqxeOv63p1ncpKYMMGAEAKgGwv4pg9e7ZLcYg2PkgcHBveCfT7p7X+iRQv3wfFal+ksUHi4fjwXKDfO631T6R41YwlEN4L+T5IvqTmDDNdVLuyAxaLpd2Hq8e5+xg8eDD+/Oc/Y+/evbj22mtV6rmY7r333jb7Nm/e7HY7js5x1DYRERH5QUYGYDYDAGIAjPGwmYSEBM1XehMRERERERFR5yBMZVhHVVkWiwXTp0+HJEmwWCzo168fXnzxRY+uExwcjMjISFx11VUYPnw4rrrqKk9DDni//vWv8ac//clu37p16/DSSy8hJCTEpTb279+Pffv22e277bbbMGDAAMXiJCIiIhdVVgK5uXa7XgOQBMDkRjM6AJl//KOCgRERERERERER+Y4wybDHH3+8w+9Pnz4dgHWKxB49ejg9nrw3fPhw3H777XbTHFZXV2PVqlWYP3++S2383//9X5t9s2fPVixGIiIickNUFFBVZbdrcG0t5q9ejWWrV8Pcao1PR3Q6HQpycxF3112+ipKIiIiIiIiISFHCJMNc0Xq6RPK9hQsXtpnScPHixZgwYYLTqZFWr16Njz76yG7fjTfeiIcffljxOEVXX1+vdggkiNZjgWPDPYF+/7TUP9FiVSsef11X0euEhtq31diIUWPHYmmfPsjJyUFZWVm7p8bHx2P58uWIiYlBjdlsm27Rp/FSQOHY8E6g3z+t9U+kePk+KFb7Io0NEg/Hh+cC/d5prX8ixatmLIHwXsj3QfKnhoYG1a4tWTSSYXriiSdsX3szTWKg6t+/P7799lu7fUo9tffddx/++c9/2u3r1q0bNm3ahJ///Odtjr906RIyMjKwaNGiNt/bsmULfvaznykSl5ry8/ORn5/fZn99fT0MBoNtOzMzE/369fNjZERERN4pLy/Hjh07cOzYMTQ0NCAsLAwDBgzA3XffjYEDB6odHhERERERERFpVEVFBdLT023bhw4dwrBhw/xybc1UhnW0plhnMGnSJJw8ebLd7zv6XnR0dIdt/vvf/8Z1113n9No5OTkoKSlBVYtplWpqavCLX/wCcXFx+OUvf4kBAwagoaEBX3/9Nd566y2cOHGiTTu///3vAyIRBgDHjx/Hzp071Q6DiIhIcQMHDmTSi4iIiIiIiIgCimaSYZ3dl19+2abyy5kvvviiw++b25naqLWoqChs27YNd955J06dOmX3PYPBYFcJ1Z4HH3wQr7zyikvX04L+/ftj7Nixbfa3rgwjIiIiIiIiIiIiIiJ1MRlGLhk6dCj27t2Lhx9+GLt27XL5vK5du+K5557DokWL0KVLFx9G6F/Tpk3DtGnT2uw/fPgwhg8f3mZ/fHw8wsPD/RAZia6+vh579+61bXNsuCfQ75+W+idarGrF46/r+vI6vmhbtPFB4uDY8E6g3z+t9U+kePk+KFb7Io0NEg/Hh+cC/d5prX8ixatmLIHwXsj3QfIno9Go2rWZDCOXXX/99fjPf/6DgoICvPrqq9Dr9e2uSxYREYHk5GQ8++yzGDJkiJ8jFU94eDi6deumdhgkII4N7wT6/dNS/0SLVa14/HVdX17HF237474YjUBuLlBaCtTVARERQHQ0kJICxMT49NLkBdFeO7Qm0O+f1vonUrx8HxSrfZHGBomH48NzgX7vtNY/keJVMxYh3wsrKwFJAvr2Vb5tFdojbQsLC1Pt2kyGacTx48fVDgEAIEkSHnzwQTz44IM4c+YM9u7di2+++QY1NTUIDg5Gr169MHToUIwePRohISFqh0tERC4wGo3Izc1FaWkp6urqEBERgejoaKSkpCCGWQQSnMEApKUBxcVtv6fXA9nZQEICkJkJxMX5Pz4iIiIiIiJVZWRYk2GrV6sdCZGqAiIZdvbsWZSVleH8+fM4f/48Ll265FV7jz32mEKRBbbevXtj8uTJaodBREQeMhgMSEtLQ7GDLIJer0d2djYSEhKQmZmJOGYRSEBbtgDJyYDJ1PFxej2QlAQUFAD81YWIiIiIiDqNykrrFBoAsGCBy9VhRIFIs8mwvXv3Ijc3Fx999BGqqqoUbZvJMCIiCnRbtmxBcnIyTE6yCHq9HklJSSgoKOAfQJBQDAbXEmEyk8l6fFERK8SIiIiIiKiTyMgAzOYfvxakOqyyshKSJKFvICXn3JyOkvyvi9oBuOu7777DL37xCyQkJCAvLw+VlZWwWCyKPYiIiAKdwWBwKREmM5lMSE5OhsFg8HFkRK5LS3M9ESYzmYD0dN/EQ0REREREJJSWVWEAkJMDKFxU4qmMjAxkZGQ4P7CyUpiYncrIsD4UUllZqXgRUGenqcqwo0ePIikpCWfOnLElriRJUqx9JsPIV+rr69UOgQTReixwbLgn0O+fv/qXmprqciJMZjKZMGfOHGzfvh2AeM+FWvH467q+vI4v2vb1fdm/vwuKiyM8OlevB/7znzpERzcrGhO5RrTXDq0J9Puntf6JFC/fB8VqX6SxQeLh+PBcoN87rfVPpHjVjEXk90LdkiUIkavCAMBshnnJEphWrPC67Y44a6+qqgq5l5N0c+bMQZ8+fdptS7dkCSBJbWIWjVRVhYjLfaqbMweWDvrkqiVLlkCSJKwQvO/uamhoUO3akkUjGaALFy5g+PDhOH78OAD7JJiSXZAkCU1NTYq1R4EpPz8f+fn5bfbX19fbVU5kZmaiX79+foyMiKhjR48exTPPPOPx+StXrsTAgQMVjIjIfWvWjMSHHw7w+PyJE4/ht789oGBERERERERE4tBVV+Pu2bMR1Nhot78pOBg71qyBqVcvlSID1q5di61btwIAJk2ahFmzZjk8Tu4DANVjdmbk2rUYcLlP30yahIPt9MlV1dXVmH2572vWrEEvgfvuroqKCqS3mLLl0KFDGDZsmF+urZnKsJUrV+L48eNtkmB9+vTBQw89hPj4eAwcOBDdu3dH165dVYyUOoPjx49j586daodBROS2HTt2eH0+k2GktmPHunt5fjeFIiEiIiIiIhLPzYWFbRJhABDU2IibCgu9TtZ4qrq62jbjDABs27YN999/v8NkT8s+qBmzM7rqavRr0acbtm3D1/ff71XyrrCwEI2X+15YWNhuwpDco5lk2Ouvv25LhFksFnTp0gUvv/wy5s2bh+BgzXSDAkT//v0xduzYNvtbV4YREYnm2LFjqp5PpASTKcir8xsa+LsjERERERG5T1ddbZ22T+BKndbJmdaUSNZ4qmWSBwAaGxsdJnt8kWDyldaJR28Tju4kDMk9mvgk4IsvvsDp06chSRIsFgskScIrr7yC3//+92qHRp3UtGnTMG3atDb7Dx8+jOHDh7fZHx8fj/DwcD9ERqKrr6/H3r17bdscG+4J9Pvnj/55+wckQUFBGD9+vHDPhVrx+Ou6vryOL9r29X25+uor8O23np9/zTXhGD9+vGLxkOtEe+3QmkC/f1rrn0jx8n1QrPZFGhskHo4PzwX6vdNa/0SK15+x6ObOtVvDqqNrV1VVQZKkDtfEcpU7fdTNneuwKkwW1NiI8Xv2uNQHJWOtqqrCxx9/3Ob4HTt2YMWKFXb3qXUfWscsCqmqChEO+jRgxw5ErVjh0dphc+fObZMw3LNnT8CsHWY0GlW7tiaSYYcOHbLbHjZsGBNhpCnh4eHo1o1TMlFbHBveCfT754v+edte9+7dHbYh2nOhVjz+uq4vr+OLtpVuMzYWaPF/Kw/ODxZqvHZmor12aE2g3z+t9U+kePk+KFb7Io0NEg/Hh+cC/d5prX8ixeuzWCorgQ0bAAAhixYBfft2eO2srCxIkoTVq1crHkq7fWwRY0dC1q93qQ9KkNvLysqC2Wxu832z2YysrKwf71M7fegoZtVkZQEO+iSZzYjMygLcfO4rKyuxwUHf169fj0WLFqGvO32vrAQkSaz7BSAsLEy1a3dR7cpuqK6utn0tSRJ+9atfqRgNERGRdkVHR6t6PpESUlK8O3/GDGXiICIiIiKiTiQjw5r4MJutX3egsrISubm5yMnJQVVVlZ8CxI8xOuNCH5Qk34/22N2n9vrg55idqqwEOugTcnIAN5/7jIyMdhOGGe72PSNDrPslAE0kwxoaGgBY1woDgEGDBqkZDhERkWaleJlFmMEsAgkgJgYYM8azcxMSrOcTERERERG5rHXiw0miQ05qeJTE8JSz5ExrHiRrPNVekkdmu08+SDD5jLPEo5vJO7cShs4bs95Hke6XADSRDLvqqqvstnU6nUqREBERaVtMTAzGeJhFSEhIQAyzCCSI114D3P2VUKcDMjN9Ew8REREREQWw1omPDhIdrZMafqsOc7UqTOanSquqqqoOkzyynJwc1C1cqGiCyWdcTTy6kYxyOWHoWmMuVzF2JppIhg0ZMgSAdYpEwH7aRCIiInLPa6+95vYfluh0OmQyi0ACiYsDCgpcT4jpdNbj4+J8GxcREREREQWY9hIfOTmQTpxos7t1UsMv1WHuVoXJ2umDklatWtVhkkfW22xG6KZNzhsUodpJ4ekonVWFyVxKrLpZxdiZaCIZNmbMGFxxxRW27X379qkYDRERkbbFxcWhoKDA5YSYTqdDQUEB4phFIMFMngwUFVmnPuxIQoL1uMmT/RMXERERERG1Ulmp3Q/kO1jDKnTVKrtd7VVB+bw6zN2qMJmDPiipuroaGzZscOnYBQC6Njc7P1DtaicfTEfprCpM5lJi1Y0qxs4mWO0AXKHT6ZCcnIz169cDALZu3Qqz2YyQkBCVIyNyTX19vdohkCBajwWODfcE+v3zZ//uuOMObN26FfPnz8fevXvbPS4+Ph7Lly9HTEwMampqVInVFWrF46/r+vI6vmjbn8/HzTcDH34IlJZ2wcaNITh4sAvq6iRERFgwYkQzpk41Izra+h+qFkOYVCLaa4fWBPr901r/RIqX74NitS/S2CDxcHx4LtDvndb65268uiVLUFdfj9PPP48+ffqoGos7pKoqROTmQmrn+13Xr4futttg6tULAPDnP//ZYVLDbDZjyZIlWLFihUdxdNRHZzE607oPSr4PFhYWupTk6QvAnRXOLTk5qJszBxaFx5IrdEuWIMTN6SjNS5bA1M5z7+o0krKcnBzMmTPH4c9Re2NBzfvVWkNDg2rXliwWi0W1q7vhm2++wfDhw3Hx4kUA1mzpvHnzVI6KOqv8/Hzk5+e32V9fXw+DwWDbzszMRL9+/fwYGRGR+8rLy7Fjxw4cO3YMDQ0NCAsLw4ABA3D33Xdj4MCBaodHREREREREGqarrsbds2ejuakJM8aNw5Qnn1Q7JJeNXLsWA7Zu7fCYbyZNwsFZs1BdXY3Zs2ejsbHR4XHBwcFYs2YNel1OOvkzRmfkPijJ2f1oaTWAOW6274uYnZHHcpALfWqpKTgYO9assSUcW1q7di22uvn8TZo0CbMc9L2jsaDG/XKkoqIC6enptu1Dhw5h2LBhfrm2JirDAODGG2/EX/7yF6SlpUGSJDz//PMYPXo0xo0bp3Zo1AkdP34cO3fuVDsMIiJFDBw4kEkvIiIiIiIi8ombCwsR1NiIIABjPvsMZx95RPGEkC/oqqvRb/t2p8fdsG0bvr7/fhQWFnaY+GlsbERhYaHDJIavY3RG7oOjZI2nnN0PmbtVYTJfxOyMPJbdFdTYiJsKC9sko6qrq7Hdg+dv27ZtuP/+++1+jpyNBTXul2g0kwwDgDlz5uDEiRO2OTQnTZqEFStWIDU1Ve3QqJPp378/xo4d22Z/68owIiIiIiIiIiKizqr1B/QzLBbMfOstTVSHuZr4CGpsRN+33sL2oiKnxzpKYnjD3L07tuXlKdJWY1iYIu0A7iV5FgAI9eAa7SWYfMXbxKOjZJSrCcPWHCVWnY1Xf98vEWlmmsSW3njjDTz11FMwmUyQJAk33ngjpk+fjrFjx+Kmm25Cjx49EBQUpHaY1AkdPnwYw4cPt23L0yTGx8cjPDxcxchIFPX19XbrM3FsuCfQ75+W+idarGrF46/r+vI6vmhbzfEhVVXhu1On0HTttYqvRUDeE+21Q2sC/f5prX8ixcv3QbHaF2lskHg4PjwX6PdOa/1zNV7d3LkIabUeUnaXLhh36JBiv6/74t5JVVWIGDUKkotrQ12SJAywWHDChWNnzpzp9tphWvo/YX19PWbMmOHS1H99ARyFZ8kwALCEhKCutNQva2E5GsvuMs+caVs7rKqqCqNGjXJpTTVHQkJCUFpaij59+rg8Xv15v9pjNBoxfvx42zanSXTAUXJLkiRYLBaUl5dj4cKFilxHkiSPsrFEHQkPD0e3bt3UDoMExLHhnUC/f1rqn2ixqhWPv67ry+v4om2/Ph9ZWTD+5z8oGDsWq1ev9s81yWOivXZoTaDfP631T6R4+T4oVvsijQ0SD8eH5wL93rXsX2VlJSRJQt++fVWOqn0On4/KSmDDhjbHTm9uxkvLl+Pl/Hz/xeKurCzAjSRFV4sFCwCkuXDs+vXrsWjRIq+eT5H/T1hVVeXzqjCZZDYjMisL8PX//doZy+4KWb8eIYsWAX37Iisry+NEGACYzWZkZWVZ/9/r4nj12/3qQJiCFYju0kwyzFEBmyRJkCSp3e8TERERUSdSWQlLbi7GmM14oqwMVQsWCP2BQYcqK3Hyu+/QfN112u0DERERESkiIyMDkiRp74+9MjIcfkAfCqDPxo2oevllMX/XrawEPKgAmgkgA3BaHWY2m5GRkaG959NFvXr1Ql6LqRtvv/12REZGtjmuy4kT6HHbbW4lHR3KyQEWLAB8OZaiooCqKmXaioxEZWUlcr2sMgOAnJwc/PGxx3CtO235434JSjPJMAC2xJe733MVE2pEREREGpaRAclsRiiAP1y6pO3/YGZk4GtWuBERERF1eif37MG/33gDJyQJC7T0x15OEkrTm5vx0sKFPqsO80o7STxnQgGXq8NycnK09Xy6QafToXv37rbtXr16Oa40i4xUNMHkUzqd9aGQqKgoVCnU96uef9698Wo2W8d4J/x/pqaSYUxWEREREZFDl6vC5D+Pmglg6BtvaLM6LJAq3IiIiIjIK1+npGBuYyPSAG39sZeThJKw1WEeVoXJWB3mBoUTTFqi0+mgU6LvlZXAunXun9dJq8M0kwxbvHix2iEQERERkaguV4XJNF0dFkgVbkREREQaJMoaXSf37MGYQ4cwBtYEyxtvvKGNaiIXE0pCVod5WBUmY3UY+ZWn47WTVocxGUZERERE2taqKkymyeqwQKpwIyIiItKiykqsWbgQ5yMjVf+DpK9TUnDd5a8XAEjTyh9KufgBvXDVYV5WhclYHUZ+4e147YTVYV3UDoCIiIjEUFlZqdic1UR+1aoqTNayskozOqhw07TKSuXWAyAiIiLyodqFC9F30ybk5OSo+v+jU/v2YcyhQ7btmQD6wFodJvT/29z8gH56czPWLFzow4DcEBVl/Z31zBmnjxP796NP166IAto8+gI46+Il1R5npGFeVjHaqsM6Ec1UhhEREZFvZWRkQJIk/lUaaUs7VWEyTVVWBVKFW2sZGYAkAUuXqh0JERERUfsqK6HbtAnTm5vxJ5Wrdk6kpeHmFtu26fdErw5z8wN6oarD3FjDqmdkJEpPnEBtbS127dpl23/77bcjMjLSrcu6ezyRUlWMna06jMkwIj+or69XOwQSROuxwLHhnkC/f2r2r6qqCrmXf5GaM2cO+vTp0+Hxoj0XasXjznWrqqogSZLTe+vtdURo25/Ph27JEoQ4WZj7D5cuYcmSJVixYoXP4lBCe33RUh8ckaqqEHH59aXhiSdQXV0NSZLQq1cv1V87tEa0116laa1/IsWrhfdBka+jdPsijQ0SD8eH5/xx7xqffRY9mpsBWBNPc3NyXPr/kRJa9udCWRnuPXKkzTHy9HtvvPGG3+Jqj6PnQ/69r70/VGvP9OZmPP/ss1i4Zo1isfhDaGgoGhsb0b17d9u+sLAwhIaGutWO2WyG2UkCUUv/J+TrnB+EhkJy8BrhCUtICFBTo0hbrmhoaPDbtVqTLBaLRbWrE2lUfn4+8h0s7llfXw+DwWDbzszMRL9+/fwYGRGRZ9auXYutW7cCACZNmoRZs2apHFHgWbt2LSRJ4r1VkK66GnfPno2gxsYOj7sIYHBQEJ5fuxa9evXyT3BuctYXLfShPSPXrsWAy68v30yahN9bLPxZICIiIuHoqqtx56xZ6Hr5o9KLAAYCuFWF/x8FpadjckWFw++tBpAGMf/f1vL3Pne9LkkIzcnR3O+6ROSeiooKpKen27YPHTqEYcOG+eXaXDOMyAPHjx/Hzp072zxaJsKIiLSiuroa27dvt21v27YNZ8+6OsM5uUK+x7y3yrq5sNBpIgywVlY909SEwsJC3wflIWd90UIfHNFVV6Nfi9eXG7Ztw5fbtvFngYiIiIRz/Vtv2RJhwI/TEvr795YLZWWY0E4iDPhx7bCPPvpIqN+nWv/e564ZFgt2vvWWghEREdkLuGRYU1MTqqurUVFRgYoO3jiIvNG/f3+MHTu2zSMuLk7t0IiI3FZYWIjGFh/CNzY2au4Dd9HJ95j3Vjnu/md7JoDDgn1gIHO1LyL3oT2tk3xBjY14pqlJ8z8Luupq1JeVaeq5ICIiovbpqqtx086dbfbPBHC1n39viczKQkeT7MlJuibB/lDK1T9Ua08ogDGffcbfr4jIZzQ/TeLBgwfx/vvv47PPPsP+/ftx/vx52/ckSbL7cK+18+fPo6mpybYdERGBkJAQn8ZLge3w4cMYPny4bVueJjE+Ph7h4eEqRkaiqK+vx969e23bHBvuCfT7p0b/qqqqMGrUqDbzk4eEhKC0tLTdOehFey7UiseV67a+x87urafX8ZQv2vbH86GbOxchbi4YvBrAgZkzhVt3y52+iNoHR6SqKkSMGgWp1euLPOXQ6eBgFBcX46abblIlPm/o5s7Frt278fZPfuLX50K0116laa1/IsUr8vugFq6jdPsijQ0SD8eH53x57xp/+1v0ePtth99bDWCuB7/Du6u+vh6fbdyI++fP7zAZBvz4+9SZrl3xxRdfqLJ2WMvnQ1ddjXvmzGnze5+7LgJ4/je/cXvtMDV/rgLhvZDvg+RPRqMR48ePt237c5rEYL9cxQdKS0uxcOFC2/omAOBuXi89PR2bNm2ybc+cORNrPFyokagj4eHh6Natm9phkIA4NrwT6PfPH/3LyspyuFCv2WxGVlYWVq9e7VI7oj0XasXj6Lqt77G799bV6yjFF20r3mZlJSwbNrh92kwAQ/PzUbNoEfr27atcPN5wsy9C9qE9WVmAg9cX+a+Z0xobsXbtWrzxxht+D80rl5+zn5jNSPn6a1WfC9Fee5Wmtf6JFK9I74NavI7S7Ys0Nkg8HB+eU+zeVVbi0jvvtPvtmQAyFPgd3hXOqsJktt+nLl3yS1zOmLt3x1cff4w777wT5kuXvGrr4ubNSP/zn736/UrNn6tAeC/k+yD5UlhYmGrX1uQ0iWvXrkVCQgK2bt0Ki8ViS4JJkmR7uGLevHkAYGvjnXfewcWLF30WNxERkUgqKyuR20E1Sk5ODqqqqvwYUeBp7x7z3nopI8OjvzoNBfCHS5eQkZGhfEyecrMvQvbBkcpKoIPXF3mti/Xr12vvZ+Hyc6aZ54KIiEgElZWAoO/5tQsXomtzc7vflxNPvv4d/tS+fR2uFdaa/PvUG2+8ofrvU80hIbjq5ptReuIEvjxzxqtH+YkT6NWrl6r9IaLApLlk2Msvv4zU1FRcvHgRFovFlvySE1ruVIcNHz4cd911l237/Pnz+Pe//+2LsImIiISTkZHhsCpMZjabhfuQ12g0IjU1FYmJiRg5ciQSExORmpqK0tJStUNzqL17LOK91YzKSljcnB6xpZkA/i3ABwYAPO6LUH1oT0aGw6owmfyhkuZ+Flo9Z5p4LoiIiESQkYHahQvFe8+srISuxaxR7ZkJIMrHv7ecSEtzqSpMJv8+dUmQP87R6XSIiopS5KHT6dTuDhEFIE0lw959910sXry4TRJs0KBBSE9Px6pVq3D99de71eZDDz0EALZqso8++kjxuImIiETjrCpMJkoFk8FgQEJCAmJjY5GdnQ29Xo+DBw9Cr9cjOzsbY8eOxfz583H06FG1Q7Vh5Z2PeFgVJhOqmieQKtxaclIVJpP/mllTPwutnjPhnwsiIiIRXP7dQLdxI9YsXKh2NHacVYXJfF0ddnLPHiQeOeL2eSJVhxERiU4zybALFy7g97//vS0RZrFYEBkZiU2bNqGsrAyvvPIKnnzySfTo0cOtdn/1q18hKCgIgHW6xI8//tgX4RMREQnFWVWYTISqjS1btiApKQnFxcUdHldWVobnnnsO+/bt81NkHdNi5Z3wvKwKkwlRzRNIFW6tOakKk2muOqyd50zo54KIiEgEl3836NrcjD4bN4rznuliVZjMl9VhX6ekuFUVJhOtOoyISGSaSYatXr0ap0+ftkuE/ec//8HDDz/sVbs9evTA0KFDbdvffPMNampqvA2XiIhIWK5WhcnUrNowGAxITk6GyWRy6Xiz2Yy//OUvMBqNPo6sY1qrvNOMqChcPHoUZ7/80qtH7ZdfYk95ubprEQRShVtLLlaFyTRVHdbOcybsc0FERCSCVr8bTG9uFqY6zNWqMJmvqsNO7tmDMYcOeXw+q8OIiFyjmWTYxo0bbYkwSZKwatUqjBw5UpG2Y2Nj7dYaO+JBWTIREZFWuFoVJlOzaiMtLc3lRJjMbDZj/vz5PorINVqqvGtPZWWleP+Z1umgu/569Bo61OtH1PXXq7cWQSBVuLXmYlWYTDPVYU6eMyGfCyIiIhG0+t0gFBCjOszNqjCZL6rDeq9b51FVmEz+fWrq1Knq/rEXEZHgNJEMO3XqFA4fPmzb7tevH6ZNm6ZY+7fccovddnl5uWJtExERicTdqjCZGlUbJSUlTqdGbM/evXtVqw7TUuVdRzIyMsROTmhZIFW4teRmVZhME9VhTir5tFwdJmTim4iIAkM7vxuIUB3mblWYTPHqsMpKBK1b53UzMwF8unEjzp49631MREQBKljtAFzRcu0PSZIwceJEdOmiXB7vqquustv+4YcfFGubiIhIJO5Whcnkqo3Vq1f7ICrH8vLyvD4/JiZGoWhc52nlnT/vrTMtE3oLFixA3759VY4owFyucFOpLs133KwKk8kfKqUJ+LMAwFYVJjk5bCaAoW+8gSqN/cxkZGRAkiTx7jsREWlfO78b2KrDXn5ZnfdMD6vCZDMBZCj1e8vlP5Kqq6tDXV0d9uzZY/vWbbfdhoiICJeb2hMRgUhR/kiKiEhAmqgMO3PmDADYpjIcNWqUou1feeWVAKyJNgCora1VtH0iIiIRtFex1BfWqgxn/F21UVpaqur5nqiqqtJM5V1H5ISe8FPXkTg8rAqTCV0d5uL6blqsDpPfF4S870RE5JBmKnqd/G6gZnWYp1VhMkWrw1pMA95j8GDrH0xdfvQYPFg704ATEWmAJpJhrUt8e/TooWj7Fy9etNtWsuqMiIhIFO1VLC24/HDG34mRuro6r85X449bVq1a5VXlnQhaJ/T4ITm5xMOqMJmwa4e5ub6b1tYOY+KbiEh7NDOVtZPfDVRbO6yyEhFvv+11M3NCQnBy715xpqsmIiKnNJH1CQ21X0bSZDIp2v65c+cA/Fh51rNnT0XbJyIiUltHVWEp+LEqwxl/JkbcmRLEkcjISIUicU11dTU2bNjg8fmiJJ1aJ/T4ITk55WVVmEzI6jAXq8JkWqoOa/2+INR9JyIihzRT0evi7waqVIdFRUGqqgLOnPHqIVVVoefgwazEIiLSEE2sGRYVFWW3rfRikIcPH7bbZjKMlFZfX692CCSI1mOBY8M9gX7/fNm/0NBQHDlypM3+nosXI/TyfPmHp07F9y+84LStkJAQvzwXt9xyC/R6vVfn19TUKBhRWy37XVhY6FFVmMxsNmPJkiVYsWJFh9dxtO2Nlm21l9DLycnBnDlz0KePKynTwP9ZpVZCQyG1eH1ZtGgRNr31lkdN1aLjnwV/kqqqEJ6T4/ZfD8prhx1x42fGVUr+bC1ZsgS9zWZYAJyAGPdda68dIsWrViz+uq6vr6N0+yKNDRKPN+NjyZIltt831X7N7ohuyRKEuDjFcJ+NG3Fk/nyX3jMV+9lq9Uf3HjObvaqMb01rrx0ixatmLIHwXsj3QfKnhoYG1a4tWeRyKIHt2LED99xzj21Nr6lTpyI/P9/hsaNGjcKBAwdgsVggSRKampqctj9kyBB8/fXXtnO++OILDB8+XMkuUIDJz893OAbr6+thMBhs25mZmejXr58fIyMicp2uuhp3z56NoMZGAEBTcDB2rFkDkyBTfZSXl2Pu3Lken79y5UoMHDhQwYjaV11djdmzZ6Px8r30VHBwMNasWaPadCtr167F1q1bHX5v0qRJmDVrlp8jIq0JlJ8FABi5di0GtPPz4MxqAFsF/pmRn6dXGhthAZB2eb8I952IiBxr/R4r6mt26/9jOHMRwMzx4zHlySd9GxgREQmhoqIC6enptu1Dhw5h2LBhfrm2JirDRo8ejaCgIDQ3N8NiseDjjz+2Ja68tWvXLnz11Ve2tnr06MFEGDl1/Phx7Ny5U+0wiIi8cnNhod1/UoMaG3FTYSEOCvLh7cCBAzF48GCUlZW5fe7gwYP9lggDgO7duyMvL0+RtsLCwhRpx13V1dXYvn17u9/ftm0b7r//fuE+cCGxBMLPAmD9IK9fBz8PzswEsOKjj3BW0J+ZwsJCXNPYiJTL2xmwVoc1NjaisLBQ2CQeEVFnJr92yxW9or5mt/4/hjOhAMZ89hnOPvKIkO+ZREQUODSxZlj37t0RHx9vW9Pr5MmTeO+99xRpe9GiRQBgS66NGzdOkXYpsPXv3x9jx45t84iLi1M7NCIil7T3Qe8N27ZBp/B0xN6YOXMmQkJC3DonJCQEM2fO9FFE7V+ze/fuijzc7a9SCgsLO6zmkT9wIepIIPwsAO5/kNdaKIBnmpqE/JmRE98LYI0zFMCCFt/ftm2b4tPSExGRd1q+dov8mu3pH5PMsFiw08MplomIiFylicowAJgyZQr0ej0kSYLFYsHTTz+NCRMmIDIy0uM2X3jhBXz22We2NgHgiSeeUCpkCmDTpk3DtGnT2uw/fPiww8rC+Ph4hIeH+yEyEl19fT327t1r2+bYcE+g3z9/9k83d67DD3qDGhsxfs8emJysP+CvWMePH4/rr78ejz/+OEwmk9PjQ0JCMG/ePDz88MN+GRv+ug++vE59fT0++OCDDqvCZDt27MCKFSucrukQ6D+r5DktjA2pqgrhO3Z43c5MAH/dvh03u/Az4yol7t/cuXPtqsLkWFtWh+3Zs0eVdWi0MD5aEiletWIJhPdBX7Qv0tgg8XgyPlq/dovwmu1Ie//HcCYUQMLOnbg5K6vD98xA/9nSWv9EilfNWALhvZDvg+RPRqNRtWtrJhmWmpqKlStX4tSpUwCAqqoqTJo0CR988AG6devmVlvNzc2YO3cuMjMzbYkwSZJw6623YtKkSb4Inzq58PBwt8cpdQ4cG94J9Pvns/5VVgIbNrT77ZD16xGyaBHQt6/LTfryuXjwwQdx4403Ij09HXq9vt3jBg8ejJkzZ2LQoEGqjQ1/XVfp6zirCpOZzWZkZWVh9erVbrUf6D+r5Dkhx8aNN8JUXo66ujqvm9oTEYHIqCjodDoFAmvL3ftXWVmJDRs24K+wfvAok6vD5LXD1q9fj0WLFqGvG+8DviDk+OiASPHyfVCs9kUaG2SvsrISkiSp+nrnbHw4eu0W8TXb2f8xnJne3IyXli/Hyw7WZ29PoP9saa1/IsWrZiyB8F7I90HyJTWnw9dMMkyn0+HFF1/ErFmzbAms3bt3Y9iwYVi2bBkefPBBp1OpVFdXo7CwECtWrMA333xjt+6YJEnIyMjwR1eIiIjUlZEBmM3tf99sth7jZsLDl+Li4rB7924YjUbk5eWhtLQUtbW1iIyMRHR0NB566CH873//UztMTaqqqnKpKkyWk5ODBQsWqP+BC5Gv6HTQXX89fJO+UldGRgZ6m812VWGyltVhZrMZGRkZbie+1STCB9pEpD0ZGRmQJEno1ztHr91CvmY7+z+GE6EA+mzciKqXX+ZrORER+YQm1gyTpaSkYPr06bYklsViwYkTJ/D444+jd+/euPPOO1FRUWGb8hAAHn74Ydx7770YOnQorrnmGqSmpqK8vNyuDUmS8Nxzz+Gee+5RsXdERER+UFkJ5OY6Py4nB6iq8n08boqJiUFWVhY+//xzHDhwAJ9//jmysrIQHR2tdmiatWrVKpeqwmTyBy5EpC2VlZXIzc21rRXWWuu1w3JyclAl4PtAezIyMvjaRERukV8XRX69a++1W7jXbFf/j+HE9OZmrFm4UIGAiIiI2tJUMgwA1qxZg4kTJ9qSWHJCq6amBjt37sQPP/xgO9ZiseAf//gHtm/fjrKyMlgsFrvzZL/+9a+xZMkSFXpDRETkZ67+xaZcHUYBTZ52x12qf+BCRG7rqCpMNhOAvFKLlhLfWvhAm4jEs+aPf0SU2Sz0652zil5hXrOjonBizx706doVUYDHj74AMv/2N76WExGRT2guGRYcHIwtW7bg+eeft6vskpNbLavC5O2Wx7Q+7oUXXsBbb73l304QERGpwd2/2BS0OoyUk5GRAbMH09mo/oELEbnFWVWYTLhKAxfJr2V8bSIiV1VWVuL6t96yveaJ+HqnqYpenQ49hwxB6YkT+PLMGa8e5SdOoFevXur0g4iIAprmkmGAdX2vF198EUVFRbYqMUdJL0cJMPkxbtw4FBUVYdGiRSr3hoiIyE/cncef1WFeMxqB1FQgMREYOdL6b2qqdb/a5A9YPCXih0ZE5JgrVWEyoSoNXFBZWYkPc3JsMfO1iYhcseaPf8QTzc221zwRX++0VtGr0+kQFRWlyEOnC8SVO4mISG2aTIbJEhIS8MEHH+DgwYNYvHgxxo0bh9DQULukl/wAgOjoaMybNw+7du3CJ598gsTERJV7QERE5CeezuPP6jCPGAxAQgIQGwtkZwN6PXDwoPXf7Gzr/sRE63Fq8bQqTKb2By5E5BpXq8JkQlUauCAjIwN/uHTJFjNfm4jIGbkqLBT2r3kivd4FekUvERGRGjSdDJMNGzYMixcvxieffIK6ujqcPn0aX375JT7//HMYjUZUVFTgwoULMBqNWL58OZNgRETU+bhbFSZjdZjbtmwBkpKA4uKOj9Prrcdt2eKfuFrytipMxg9ciMTnTlWYTKRKg47IVWEpsI+Zr01E1BG5KkwmYnVYIFf0EhERqSUgkmEtdenSBVFRURgyZAgSEhIQHR2Nvn37IjTUlb+DJCIiCkCeVoXJWB3mMqOxC5KTAZPJteNNJiA52f8VYlFRUaiqqsKZM2dQXl6O9evX2x7l5eU4c+aMS4+qqiqu6UAkMHerwmRaqTSQq8JaV3fww2Aiak/LqjCZaNVhgV7RS0REpJZgtQNwxZdffonNmzfbtiVJwvz58xESEqJiVERERBrhaVWYTK4OW71auZgC1LPP6lxOhMlMJiA9Hdi92zcxOaLT6WxrMYSGhqJ79+627/Xq1QvdunXzXzBE5DNRUVE4uWcPetx2m9vvA3NCQvCbvXvRfN11AIDIyEhfhOgxuSrsry32zQSQAeAErB8GL1iwAH379lUnQBdUVlZCkiShYyQKNGv++EcsalEVJrO9flxOpq9W8fdeTyt65dc/swB9ICIiEpEmKsM+/fRTvPDCC3jxxRfx4osv4sMPP2QijIiIyBXeVoXJWB3m1NGj3bFvn2d/Z6TXA0ajwgERUaen0+nQMycHkgd/ECGZzeiZk4OoqChERUXZEuiiaFkVJtNadVhGRobwMRIFEkdVYTJRqsMCvaKXiIhITZpIhp0/fx4AYLFYAAATJ05UMxwiIiLtiIqyJrHOnPHuUVUFcDq8Du3YcYNX5+flKRQIEZEsQKfJbblWWGtaWTtM/sBb5BiJOlJZWam5sdt6rbDWRFg7TK7oTfXgD8DnhITgbGkpp7ImIiJqhyaSYcHB9n9lzWkkiIiIXKTTWRNiSjwEqwoQzbFj3Z0f1IHSUmXiICKyUWqaXME4qgqTaaU6LCMjA2azWegYiTqitcrGjqrCZCJUhwVyRS8REZHaNJEM69Gjh912WFiYSpEQEREROWYyBXl1fm2tQoEQEQEBO01uR1VhMtGrw+SqMJmIMRJ15OSePdiak6OpseusKkymenVYgFb0EhERiUATybCbbroJACBJEgDgzJkzaoZDRERE1IZO1+TV+ZGRCgVCRAQE7DS5HVWFyUSvDsvIyEBvs9mWsBMxRqKOfJ2Sgj9cuqSZsetKVZhM9eqwAK3oJSIiEoEmkmHx8fEIDf3x15Z9+/apGA0RERFRWwMGnPfq/OhoZeIgIgIQkNPkulIVJhO1OkyuCluAHz9wB8SK0RVaXC+KlHFyzx6MOXTI9jOmhbHralWYTLXqsACt6CUiIhJFsPND1BcWFoaJEyfi/fffBwBs3boVDQ0NnC6RNKO+vl7tEEgQrccCx4Z7Av3+aal/osWqVjwtrzNhwrf48MMBHrf10EN1qKlx/EGNL/vni7ZFGx8kDo4N7wT6/XPWvyVLljitCpPJ1R1psH6gvWTJEqxYsUKpUB3G58rzsWTJEvQ2m20JvQwAJxSI0d9jY8mSJZAkCS+++KJfruvr/indfnvtSVVVgCTB0qePo9M0oeyJJzD+8tcLAKT56OdLKVVVVS5Xhclavn7k5ORgzpw56KPgc9bueAsNhXTkiCLXsISEADU1irQlks7+PigakeJVMxZ/XVtL/ycUaWyQeBoaGlS7tmSxWCyqXd0Ner0et99+u2170aJFWLx4sYoRUWeWn5+P/Pz8Nvvr6+thMBhs25mZmejXr58fIyMiIjXNn5+EsrIezg9sZfDgc1i+vMgHERERBYbq6mr86Xe/w3+bmlz+UPsigIGwJpuCg4OxZs0a9FJxysfq6mrMnj0brzQ2Ys7lfath/cAdECNGV8j9ACB8vLrqakCSYBIkxpFr1+KCyYTiRx4R+r6150JZGe6fP9/2Myj/jJ0WeOy++8oryPnsM7eSYYD968ekSZMwa9Ys5YMjIiLqhCoqKpCenm7bPnToEIYNG+aXa2timkQASEhIwOzZsyHn7v70pz+hsLBQ5aioszp+/Dh27tzZ5tEyEUZERJ3PzJkHERLi3tphISFNmDnzoI8iIiIKDIWFhXjGjUQYYL/2T2Njo+r/fywsLMQ1jY120zy2nM5RhBhdUVhYiMbGRk3Ee3NhIW4SJEZddTX6bd+Omz/7DDvfekvtcDwSmZVl9zMo/4yJOhaqq6uRsHOn24kwwP71Y9u2bTh79qyCkREREZEaNJMMA4BXXnkFP//5z2GxWNDY2IiHHnoI8+fPx4ULF9QOjTqZ/v37Y+zYsW0ecXFxaodGREQqGjToB8ybt8/lhFhISBPmzduHQYN+8G1gREQaVl1djSPbtrm0VlhrLZNNan6gXV1dje3bt2MB4DCZIBP9Q/cLZWX4cts227bI8crJpxu2bYNOgBhvLixEUGMjulosGPPZZ8Let/ZcKCvDhIqKNvvlnzERx8I1ly5hVlCQx+fPDg5GwapVyMvLQ7du3RSMjIiIiNSgmWkSZc3NzVi0aBGWL1+OpqYmSJKEyMhIPPTQQxg/fjxiYmLQu3dvdOvWDV26aCrXRwHg8OHDGD58uG1bniYxPj4e4eHhKkZGoqivr8fevXtt2xwb7gn0+6el/okWq1rxtHddo7EL5s/XYe/e9pdnjY9vxPLlJsTEOF/Q3Zf980Xboo0PEgfHhncC/f611z+TyYTQuXPRfdMmj9o9P3Uqvn/hBQBAREQEdDqdEuG69XzMnTsXH+bm4ijQpkql5XRsADBz5ky311/y19goGTMGh48csU3tCNhPIeer63rSP93cuQjJzQUAnHv4YQRnZyvavjvxjunTB71/8hNIZjMA63P+/G9+g4Vr1nh8DX8rGTMG49tZz0qe7tOTsetLLceAp8wzZ8Lkg/UGA/m13JcC/d5prX8ixatmLP66tpb+TyjS2CDxGI1GjB8/3rbtz2kS2/+ERjBBDv6aR5IkWCwW1NTUIDc3F7le/pIjt9nY2Oh1O0QthYeH8y/JyCGODe8E+v3TUv9Ei1WteOTrjhsH7NkDGI1AXh5QWgrU1gKRkUB0NDBjBhATEwwgwqvr+IIv2hZtfJA4ODa8E+j3T+5ft/PngXfe8bid7v/4B7ovXQr07atgdG2193xUVlZiw4YN+CvaJsKAH6vD5ATT+vXrsWjRIvT1Il5fjI2Te/Yg8cgRJALIwI/Ju23btuH+++9Hr169/DYmnV6nshLYsMG2Gfn22+i6fLnLY0Dpfly1dq0tEQZYn/MB//gHav78Z6+eZ3+Rn/v2zIR1TCgxdhXTagx4KmT9eoQsWuTT149Afy33pUC/d1rrn0jxqhmLMO+FArUt0tgg9YWFhal2bc2UTlksljYPwJq8kpNiSj2IiIiIlBATA2RlAZ9/Dhw4YP03K8u6n4iIXJSRAbRIJLjNbLa2oZKMjAz0Nps7nOax5XSOZrMZGSrG256vU1IQirZTOwq5XlSrMdO1uRl1CxeqEoquuhpdHSRlpjc3Y41KMblLfu7bI48JocZuVBRQVQWcOePdo6oK6NVL7d4QERGRAjSTDAN+THzJj46+58mDiIiIiIiIBFJZCSgwAwhycqwfavtZZWUlcnNz26wV1lrrBFNOTg6qVIi3PSf37MGYQ4ds2y2Td4Bg60W1M2ZCN25UZQzcXFhoVxVmiwdAn40bhXqeHWn93LdHHhPCjF2dzpoQU+Kh0NSqREREpC5NJcOUrP5iRRgREREREZHgNF7d4UpVmEzk6rDWlUFCV4e1U0moRnWYrroa/bZvb/f7WqgOc1YVJhOyOoyIiIioBc2sGbZ48WK1QyAiIiIiIiJ/0uk0W5UhV4W1t1ZYa63XDsvJycGCBQtUX3+pvcogeZ2olmuHnThxQt01QZxUEoZu3Ai8/LLP14+T3VxYiKAO1iS3VYe9/LLqz7MjrlaFyeQxIcrYJSIiImqJyTAiIiIiIiIihblTFSZrmWCSK2xWr17tmwBd9HVKCq5zsL918q6xsRGrVq3CG2+84b/gWnOyvpxcHRaRn+/zUJxVhcmmNzfjpYUL8bIfYnJXe899e2xjQpCxS0RERNSSpqZJJCIiIgKsf20vxHoUREREDri6Vlhroq0d5qwyqPXaYevXr1cvXhfXl/PXshK73wABAABJREFU2mHOqsJs8UDMtcPcrQqTCbd2GBEREdFlTIYRERGR5mRkZHA9CiIiElZUVBRO7tmD1JAQt8+dExKCs6WlOHPmDKqqqtBLhbXOZM7Wi2qdvFN1vSgnVWEyf6wdJlVVuVQVJhNx7TBX1wprjWuHERERkaiYDCMiIiJNkf/ann9xTEREotLpdOiZkwPJheRMa5LZjJ45OYiKikJUVBR0Kq2Z5mplUOvqMFXen12sCpP5ujosdNUql6rCbMdDrOowT6vCZKwOIyIiIhExGUZERESakpGRAbPZzL84JiIicbmZnGkjJ8cvU/l1xNXKICGqw1ysCpP5tDqsshJdN2xw+zSRqsN6r1vnUVWYLBTA19Onq17ZSERERNQSk2FERESkGXJVmIx/cUxEREJyMznThtlsbUMl7lYGqVod5mHi0WfVYRkZHlUEClMdVlmJ4HXrvG4mbNMmRF28qFplIxEREVFrTIYRERGRZshVYTJWhxERkXC8rQqTqVgd5u56UapWh3mYePRJdZiXz70Q1WFRUdZxd+aMd4+qKoBVYURERCSQYLUDICIiInJF66owWU5ODubMmaNCRERERA7IyQQlREYq044bPF0vaiaADAAnLm/n5ORgwYIF6Nu3r5Lh2fMy+RS6cSPw8stAt27KxONlRaCtOuzll3173zqi01kfRERERAEm4JJhFy5cwPnz53Hp0iWP2+jXr5+CEREREZESWleFycxmM1atWoWf/exnKkRFRETUisaTCb3XrfPog4JQAIenToV55UrbvkhfJ/O8TD7ZqsMyM72PRaGKwOnNzXhp4UK8nJ/vfUxEREREZKPpZNj58+fx97//Hbt27UJxcTEqKyvR2NjoVZuSJHndBhERESmrvaow2fr163HbbbdxkXYiIiJveLleVLd//APS0qWAP6qaFEo+hW7cCNP8+d7HExWFE3v2ID4+HmYv/jgXAC7+7W/4nZrVYUREREQBSJPJsLq6Ojz33HPIz89HfX09AMBisagcFREREflKe1VhMrPZjMLCQsyaNcuPUREREQUYLyutJLPZ2sbq1QoG1Y7L01GeOHHCqwRUSFAQPr540ft4dDr0HDIEpSdOoLa2Frt27bJ96/bbb3e7Ss7nVXVEREREnYzmkmEHDx7EAw88gKNHj9oSYJIkQZIkr9tmQo2IiEg8zqrCZNu2bcP999/P6jAiIiJPKFRphZwcYMEC31eHXZ6OcukLL+CkN5VYly7hr6+/rsh0yzqdDjqdDqGhoejevbttf69evdBNqXXJiIiIiMgjmkqGnThxAvfccw9Onz4NALYEmKtJrNYJMya/iIiIxOesKkzW2NjI6jAiIiJPXa60cke7FVB+qmpy9Q9mnOF0y0RERESBT1PJsIceeginT5+2S4Jdf/31SE5Oxk033YSlS5eiqqoKFosFkiThzTffRENDA86dO4dvvvkGer0eR44cAfBjYqx79+5YuHAhf+klIiISkLsfcsnVYUREROSmy5VW7rCEhsLcogLK0qsX4McKqKioKFS5mcBzpLa2FiUlJQpERERERESi0kwybPv27di9ezckSbIlu6ZPn46srCyEhoYCANasWWP3i/Djjz/epp1Dhw5h5cqV2LBhAyRJwvnz57Fy5Up88MEHGDVqlN/6Q0RERM65WhUmk6vDkpOTfRgVERERiUCeltBboaGhCAkJUSAiIiIiIhJVF7UDcNUrr7xi+1qSJEyYMAG5ubm2RJirhg8fjnXr1uGjjz5Cz549IUkSTp06hbvuugv//e9/FY6aiIiIPOXp1Efbtm3DiRMnfBARERERERERERFpkSaSYU1NTdi5c6etKgwAVq1a5VWbd999Nz788ENERkZCkiT88MMPmDJlChobG5UImYiIiLzkblWYrLGx0evfE4iIiIiIiIiIKHBoIhlmNBpx4cIF23ZsbCyGDh3qdbsxMTH405/+ZJt28b///S/eeOMNr9slIiIi73haFSZbv369ImuIEBERERERERGR9mkiGVZeXm77WpIk3H777S6d50qV1+zZs3HdddcBACwWC15//XXPgiQiIiLFeFoVJjObzcjIyFAwIiIiIiIiIiIi0qpgtQNwxf/+9z8AsFVwDRkyxOFxkiTZbZtMJkRERHTYdpcuXfDLX/4S2dnZAIAjR46goqIC/fr1UyByIqv6+nq1QyBBtB4LHBvuCfT7p6X++TLWqqoqr6rCZDk5OZgzZw769OmjQFSO+es58+V1fNG2lsYy+RfHhncC/f5prX8ixatWLIHwPuiL9kUaGyQejg/PBfq901r/RIpXzVgC4b2Q74PkTw0NDapdW7LIi3AJbNmyZfjjH/8IwJrw+tvf/oaHHnqozXFJSUn4/PPPbcedPHkSV199tdP2s7OzMWfOHNt57733Hn7xi18o2AMKNPn5+cjPz2+zv76+HgaDwbadmZnJxCoRkZvMZrNivxyFhYUhJCREkbaIiIiIiIiIiMhzFRUVSE9Pt20fOnQIw4YN88u1NVEZ1vpDrOBgx2FHRkbabVdVVbmUDIuKirLb/vbbb92MkDqb48ePY+fOnWqHQUQUkEJCQpjAIiIiIiIiIiIixWgiGdatWze77draWofHXXXVVXbbx48fR2xsrNP25b8+l6dZbK99Iln//v0xduzYNvtbV4YREREREREREREREZG6NJEMk6eZk5NV8hpirQ0dOtTuOL1ejylTpjht/8svvwTw45pkYWFhXsdMgW3atGmYNm1am/2HDx/G8OHD2+yPj49HeHi4HyIj0dXX12Pv3r22bY4N9wT6/dNS/0SLVa14/HVdX17HF22LNj5IHBwb3gn0+6e1/okUL98HxWpfpLFB4uH48Fyg3zut9U+keNWMJRDeC/k+SP5kNBpVu7YmkmFDhgyx2y4rK3N43IgRI2xfWywWbNmyBStWrHDa/nvvvQdJkiAvn9arVy8voiVqKzw8vE2FIxHAseGtQL9/WuqfaLGqFY+/ruvL6/iibdHGB4mDY8M7gX7/tNY/keLl+6BY7Ys0Nkg8HB+eC/R7p7X+iRSvmrEEwnsh3wfJl9QsROqi2pXdcMMNN9hNgShXcrWWlJSErl272ra//vprvP322x22nZ2dja+++spuX3R0tOfBEhERERERERERERERkTA0kQwDrIkui8UCi8UCg8GAixcvtjmmR48euOeee2zTHVosFvz2t7/FP//5T4dtrlmzBk8++aRtWkUAuOaaa+wqzIiIiIiIiIiIiIiIiEi7NDFNIgDcdddd+Ne//gUAuHjxIv7zn/9gwoQJbY576qmn8MEHHwCwrh1WW1uL+++/H8OGDUNSUhJ69OiBs2fPYseOHfjmm2/sEmeSJCEtLc2v/SIiIiIiIiIiIiIiIiLf0Uwy7P7778dTTz1l23777bcdJsPuuusuJCcno6CgAJIk2RJdhw4dwuHDh23HyeuDyVVhkiRh8ODBSE9P921HiIiIiIiIiIiIiIiIyG80M01inz59kJiYaJsq8Z133kFtba3DY3Nzc3HbbbfZJbzkpJj8kPcB1sRY7969UVhYiCuuuMJvfSIiIiIiIiIiIiIiIiLf0kwyDACKiorQ3NyM5uZm1NbWIjIy0uFxkZGR2LZtG6ZPnw4AbRJgLZNgFosFd9xxB/bu3YshQ4b4rS9ERERERERERERERETke5qZJtFdkZGRyM3NxVNPPYV//OMf2L59OyorK3H27FmEh4fj2muvRVJSEh588EHceeedaodLREREREREREREREREPhCwyTDZ8OHDMXz4cLz00ktqh0JERERERERERERERER+pqlpEomIiIiIiIiIiIiIiIjcwWQYERERERERERERERERBSwmw4iIiIiIiIiIiIiIiChgMRlGREREREREREREREREAYvJMCIiIiIiIiIiIiIiIgpYwWoHoITTp09jx44dKC4uRklJCc6cOYMffvgBtbW1iIyMxJVXXonevXsjNjYWY8aMwd13342rr75a7bCJiIiIiIiIiIiIiIjIxzSdDNu1axcyMzPxz3/+E42Njbb9FovF9vW5c+dw7tw5HDt2DHv27MHrr7+O4OBg3HfffUhLS8Ptt9+uRuhERERERERERERERETkB5qcJrGmpgYzZszA2LFj8e677+LSpUuwWCy2hyRJbR4tv3/p0iVs3rwZY8eORUpKCmpqatTuEhEREREREREREREREfmA5pJhx44dQ3R0NPLz89tNfgGwS34BaDc5tm7dOowaNQrffvutmt0iIiIiIiIiIiIiIiIiH9DUNInHjx/H+PHjUVFRAQC2xBfw49SIwcHBGDBgALp3747w8HDU19fj/PnzOH78OC5dumQ7r2XS7NixYxg7diw+++wz9O/f37+dIiIiIiIiIiIiIiIiIp/RVDLsscceQ0VFRZskWN++fTF16lTcf//9GDFiBEJCQtqce+nSJRw4cADvvvsuNm3ahKqqKrsqsYqKCjz++OPYuXOnP7tEREREREREREREREREPqSZaRLz8vKwa9cuu4quoKAgvPDCC/j666/xpz/9CbGxsQ4TYQDQtWtXxMbGYunSpTh69ChefPFFBAdbc4Fym7t27cK6dev80yEiIiIiIiIiIiIiIiLyOc0kw7Kzs21fWywWhIWF4b333sOiRYsQGhrqVlshISF4/vnn8f7779uda7FYkJWVpVjMREREREREREREREREpC5NJMO++eYbGI1G25SGkiTh5Zdfxs9+9jOv2p04cSKWLl1qaxMA9u/fj2PHjikRNhERERGMRiNSU1ORmJiIkSNHIjExEampqTAajWqHRkRERERERETUKWgiGfbFF1/YbV9//fV4+umnFWn7ySefRL9+/ez27d+/X5G2iYiIqPMyGAxISEhAbGwssrOzodfrcfDgQej1emRnZyM2NhaJiYkwGAxqh0pEREREREREFNA0kQw7efKk7WtJkjBlyhTF2pbbs1gstn3fffedYu2Tcvbu3YvU1FQMGzYMV155JSIjIzFkyBA8/vjj+Pjjj9UOj4iIyGbLli1ISkpCcXFxh8fp9XokJSVhy5YtfoqMiIiIiIiIiKjz0UQy7Pz58wBgS1gNGTJE0fbl9uSpEmtqahRtn7xz4cIFzJ49G7fddhuys7Px5Zdf4vz586irq0NZWRk2bNiAu+++G1OmTMG5c+fUDpeIiDo5g8GA5ORkmEwml443mUxITk5mhRgRERERERERkY9oIhnWrVs3u+0rr7xS0fbl9uRkW0REhKLtk+eampqQnJyMNWvW2PZdccUViIuLw5gxY+zGRmFhIe655x5cuHBBjVCJiIgAAGlpaS4nwmQmkwnp6ek+ioiIiIiIiIiIqHPTRDJs4MCBAH6s3Dp9+rSi7Z85c8bh9Uh9L774Iv7973/btmfNmoWqqirs27cPer0eJ0+exMKFC23fLykpwezZs9UIlYiICPv373c6NWJ79Ho9jEajwhEREREREREREZEmkmG33XYbgoKCbNv79u1TtP2W7XXp0gVjxoxRtH3yzHfffYeVK1fatqdOnYq1a9fiqquusu0LDw/HSy+9ZJcQ27hxI7744gu/xkpERARY34O8kZeXp1AkREREREREREQk00QyrEePHrjzzjthsVhgsVjwz3/+U7F1vWpqavD+++9DkiRIkoRx48ahR48eirRN3nn11VdtUx5eccUVeOWVV9o99vnnn8f1118PwDrd5fLly/0RIhERkZ2DBw96dX5paakygRARERERERERkY0mkmEA8NxzzwGwTpVYW1uLuXPnKtLuM888g5qaGtt6YfJ1SH2FhYW2rx988MEOk5QhISF44oknbNtbtmyB2Wz2aXxERESt1dfXe3V+bW2tQpEQEREREREREZEsWO0AXDV27Fikpqbi9ddfhyRJePPNN3H11Vfj5Zdf9rjNRYsWITc317YW2W9/+1uMHz9eqZADXnV1Nfbt24fy8nLU1NSga9eu6NmzJ2655RbExcWha9euHrf91Vdf4euvv7Zt33vvvU7PmThxIpYsWQLA+mHizp07MWHCBI9jICIicld4eLhX50dGRioUCRERERERERERyTSTDAOAzMxMnD17Fu+88w4AYNmyZSguLkZmZiZuueUWl9s5cuQInnzySXz88ccArNPqPfjgg3jttdd8ErfSzp07B4PBYHuUlJSgoqKizXFytZvSNm/ejFdffRWff/55u9eIjIzEgw8+iGeffRY333yz29doveZXQkKC03NiYmIQEhJiqwj74osvmAwjIiK/GjFiBPbu3evx+dHR0coFQ0REREREREREADSWDOvSpQvefvttjB49Gs8//zxMJhM+/fRTjBgxAmPGjMF9992H2NhYDB48GN27d0d4eDjq6+tx/vx5fPXVVygpKcH7778PvV4PwJosCgsLw5IlSxSbdtEXDh06hA8++AAlJSUwGAw4duyYKnGcOHECjzzyCHbu3On02NraWuTl5WHjxo1YuHAhFi5caKvAc8WRI0dsX4eEhNjWA+uIfFx5eXmbNoiIiPzhscceQ15ensfnz5gxQ8FoiIiIiIiIiIgI0FAyLCgoqM0+SZJslUnFxcUoLi52qS35HEmSYDKZ8Oyzz+LZZ591Kx5JktDY2OjWOZ7Kzc3Fq6++6pdrteerr77CuHHj8N1337l1ntlsxqJFi3DkyBFs3LjR4fPoyPHjx21f9+3b1+VEWr9+/WzJsJZtEBER+UN0dDTGjBnj8u8kLSUkJCAmJsYHURERERERERERdW6aSYa1Nx2fnCRxZ0pAT87pzL7//ntMmDDBYSIsNjYWv/zlLzFgwAA0NDTgq6++wt/+9jecPHnS7ri///3v6N27N1555RWXrllTU2P7unv37i7H2q1bN9vXtbW1Lp9HRESklNdeew1JSUkwmUwun6PT6ZCZmenDqIiIiIiIiIiIOi/NJMMAdFgd5M4UfN6cA4iTRAsJCcHw4cMRFxeHd955Bz/88INPrjNr1qw2a5JFRkZi06ZN+MUvftHm+KVLl2Lp0qV44YUX7Pa/+uqr+OlPf4qJEyc6vWZ9fb3ta51O53KsYWFhtq/r6upcPo+IiEgpcXFxKCgoQHJysksJMZ1Oh4KCAsTFxfkhOiIiIiIiIiKizkdTyTBRklBqCA4Oxi233IK4uDjb49Zbb0VISAgA4KOPPvJJMmz79u0oLCy02xcSEoJPPvmk3Q/tunbtisWLF+PKK6/EU089Zfe99PR0HDlyBMHBHQ+9S5cu2b52dmxLLY81m80un0dERKSkyZMno6ioCOnp6ba1Sh1JSEhAZmYmE2FERERERERERD6kmWTY4sWL1Q5BNfPnz8eyZcvsqp785aWXXmqzb/HixS59aPfkk0/igw8+wPbt2237jh49ir/97W947LHHOjz3iiuusH3tzjRTLY+NiIhw+TwiIiKlxcXFYffu3TAajcjLy0NpaSlqa2sRGRmJ6OhozJgxg2uEERERERERERH5AZNhGnDttdeqct3Dhw+jqKjIbl+vXr3wzDPPuNzGsmXL7JJhAJCdne00GdYykdXQ0ODy9S5cuOCwDSIiIrXExMQw6UVEREREREREpKIuagdA4nr77bfb7HviiSdsUzO6IjY2FrGxsXb7iouLcezYsQ7P69Wrl+3r7777zuXrnTp1yvZ1z549XT6PiIiIiIiIiIiIiIgCE5Nh1K4PP/ywzb4HHnjA7XYcneOo7ZYGDx5s+/r777+3q/jqSGVlpe3rIUOGuBghEVHnZDQCqalAYiIwcqT139RU634iIiIiIiIiIqJAwWQYOVRfXw9jq09Dr7jiCo+meUpKSmqzr/X0i63dcsstdtulpaVOr3PixAlUV1fbtocOHepagEREnYzBACQkALGxQHY2oNcDBw9a/83Otu5PTLQeR0REREREREREpHVMhpFDpaWlaG5uttsXFxeH4GD3l5kbPXo0unbtarevpKSkw3Pi4+Oh0+ls27t27XJ6ndYJtjvuuMONKImIOoctW4CkJKC4uOPj9HrrcVu2+CcuIiIiIiIiIiIiX2EyjBz673//22bfoEGDPGorJCQEffv2tdtXXl6OxsbGds8JDw/HXXfdZdt+6623nF6n5TEjRozAjTfe6EG0RESBy2AAkpMBk8m1400m6/GsECMiIiIiIiIiIi0LiGTY6dOn8dZbbyEtLQ2JiYkYNGgQevXqhdDQUPTq1QuDBg1CYmIi0tLS8NZbb+H06dNqhyy848ePt9l3ww03eNxev3797LabmppQUVHR4TlPPPGE7esDBw7g//2//9fusUajEVu3bnV4LhERWaWluZ4Ik5lMQHq6b+IhIiIiIiIiIiLyB/fnvBPIrl27kJmZiX/+8592VUYWi8X29blz53Du3DkcO3YMe/bsweuvv47g4GDcd999SEtLw+23365G6MI7depUm33XX3+9x+05Ovf06dMdVm/df//9iImJsa1d9tvf/hY33XQThgwZYnfcyZMn8cgjj6CpqQkA0KdPH8yePdvjWGVnzpyxW4PMFV9++aXd9nfffQfAmqwLCwvzOibSvoaGBrtEMMeGewL9/vmyf0eOdEFx8RUenavXA+vXX8CQIT9Onyvac6FWPP66ri+v44u2RRsfJA6ODe8E+v3TWv9Eipfvg2K1L9LYIPFwfHgu0O+d1vonUrxqxhII74V8HyR/av35+cWLF/12bU0mw2pqavD0008jPz8fgH3yCwAkSWpzTstjLl26hM2bN2Pz5s144okn8Ne//hXdunXzacxac+7cuTb7IiIiPG7P0bnff/99h+dIkoTc3FzcfvvtuHDhAr777jvcdtttSE1NRVJSEoKCgrBv3z6sXr3aVu0XFBSEnJwcu/XGPPX666/jxRdf9KqNZcuWeR0HEZEIpk1TOwIiIiIiIiIiIgoklZWViImJ8cu1NJcMO3bsGO666y58++23tgSXs+SXJEltjpG/v27dOnz66af45JNPvJoGMNDU19e32edNBt/RuRcuXHB63qhRo/D222/jN7/5Derr61FTU4OMjAxkZGS0OTY4OBhZWVmYOHGix3ESEREREREREREREVFg0dSaYcePH8f48eNx/PhxWCwWuySXxWKBxWJBUFAQBg0ahLi4OIwdOxZxcXEYNGgQgoODbccAPybILBYLjh07hrFjxzpcJ6uzunTpUpt93lRbOUqGmc1ml879+c9/jv379+Pee+9Fly6Oh2xiYiJ2796NWbNmeRwjEREREREREREREREFHk1Vhj322GOoqKiwq/KyWCzo27cvpk6divvvvx8jRoxASEhIm3MvXbqEAwcO4N1338WmTZtQVVVllxCrqKjA448/jp07d/qzS5riqALPm3NbT2/ZkZtuuglbt27FyZMnsWvXLpw4cQJNTU3o06cP4uPjMXDgQI9ja09qaiqSk5PdOqempgYGgwG1tbX44x//aNv//vvvY9CgQUqHSBo1bdo0GAwGxMXF2aZ7JdcF+v3TUv9Ei1WtePx1XV9eR+m2jx49ivvuu8+2zfdBakm01w6tCfT7p7X+iRQv3wfFaZ/vg+SMSK8dWhPo905r/RMpXjVjCYT3Qr4Pkr9cvHgRjz32GA4fPoxhw4Zh7Nixfru2ZpJheXl52LVrl10lWHBwMBYuXIj58+cjNDS0w/O7du2K2NhYxMbG4oUXXsDy5cvx8ssvo7Gx0ZYQ27VrF9atW4cnnnjCH10SWteuXdvsa2ho8Lg9R+c6Slo6c9111+HBBx/0OA539O7dG71793b7vISEBBw+fNguGTZo0CAMGzZMyfBIw8LDw23/cly4L9Dvn5b6J1qsasXjr+v68jq+7gPfB6kl0V47tCbQ75/W+idSvHwfFLd9vg9SayK9dmhNoN87rfVPpHjVjCUQ3gv5Pkj+1KtXL9u/V155pd+uq5lpErOzs21fWywWhIWF4b333sOiRYucJsJaCwkJwfPPP4/333/f7lyLxYKsrCzFYtayK664os0+pZNh8ossERERERERERERERGRr2giGfbNN9/AaDTaKrgkScLLL7+Mn/3sZ161O3HiRCxdutTWJgDs378fx44dUyJsTevZs2ebfXV1dR635+hcR9cgIiIiIiIiIiIiIiJSkiaSYV988YXd9vXXX4+nn35akbaffPJJ9OvXz27f/v37/z979x0eVbX1cfw3SSAJSegQ6aAgIDV0okiToliwUEXKFRARKYqKqBQbEX2lCALSAiooKOWKBZAmCAihCQICIpDQIZQkEEIm8/4RZm4mk56ZTMn38zx5bmbP2Xuvc+bE4c6atbddxnZnwcHBNm1RUVE5Hi8yMjJLcwAAAAAAAAAAANiTWyTDzpw5Y/ndYDDo6aefttvY5vFMJpOl7ezZs3Yb311VqVLFpu3kyZM5Hu/UqVNWj729vW2SkAAAAAAAAAAAAPbm4+wAsuLatWuSZFnOsEaNGnYd3zyeeanE69ev23V8d1S9enWbtmPHjuVorISEBJvKsHvuuUc+Pm5x+wF217dvX7Vq1UqVK1d2dihuydOvnzudn6vF6qx48mpeR87jaq8lPBv3W+54+vVzt/NzpXh5H3Tt8YGUuN9yztOvnbudnyvF68xYPOG90JVeS3g+Z91vBlPKkigXNW3aNA0dOlRScsLqm2++UZcuXew2/tKlS9WtWzfL+JMnT9bLL79st/HzQuXKlW0qt3Lz0sbFxalw4cJKSkqytAUEBOjq1avZTmJt3bpV999/v1Vb9+7dtXjx4hzH5+r++usv1a5d2/L4wIEDqlWrlhMjAgAg7/A+CADIz3gfBADkZ7wPwlW5xTKJ99xzj6T/VW6dP3/eruNfuHAhzfnys4CAAIWEhFi1xcXF5Wg/tS1btti0PfjggzmODQAAAAAAAAAAIKvcIhnWtGlTeXt7Wx7v3LnTruOnHM/Ly0vNmjWz6/juqmPHjjZt3333XbbHSatPWmMDAAAAAAAAAADYm1skw4oXL642bdrIZDLJZDJp5cqVdtvX6/r161qxYoUMBoMMBoNatWql4sWL22Vsd9e9e3ebtvnz5yshISHLY+zZs8cmedm0aVNVqVIl1/EBAAAAAAAAAABkxi2SYZI0evRoSclLJcbExOjVV1+1y7gjR47U9evXLftrmeeBVLt2bT3wwANWbRcvXtSkSZOyPMabb75p0/biiy/mOjYAAAAAAAAAAICscJtkWMuWLTV48GBL0mrevHl6++23czXmmDFjNGfOHEtV2AsvvKDWrVvbI1yPkdY1Hjt2rHbv3p1p32nTpmn16tVWbXfffbd69uxpt/gAAAAAAAAAAAAy4uPsALJj6tSpunTpkpYsWSJJmjBhgrZv366pU6fqvvvuy/I4hw4d0rBhw7Ru3TpJkslkUteuXfXZZ585JG531qFDBz3xxBNauXKlpe3WrVtq3bq1vvrqKz322GM2fW7fvq2wsDCNGTPG5rmpU6eqQIECDo3ZFZQqVUpjx461egwAQH7B+yAAID/jfRAAkJ/xPghXZTCZS63cyP/93//pnXfeUXx8vAwGgySpWbNm6ty5sxo2bKjq1aurSJEiCggIUFxcnK5du6YjR45o165dWrFihbZt2yYpOQnm7++vd999127LLjrKI488ojNnzqT7/MGDB3X79m2rtnr16mU45k8//aSyZctmOvfFixfVoEEDRUVF2TzXqFEjPfHEE6pSpYpu3rypo0eP6uuvv9bp06dtjh0yZAgJRwAAAAAAAAAAkKfcJhnm7e2dZrs5fHNSLCty0ic1g8GgxMTEHPfPrsqVK+vkyZN2HfPff/9V5cqVs3TsoUOH1KZNG507dy5Hc3Xt2lWLFi1K93UEAAAAAAAAAABwBLfZM8xkMqX5Y97vK73n7dUnrZ/8pGbNmtqxY4ceeOCBbPUrUKCAxo4dq8WLF5MIAwAAAAAAAAAAec5tkmGSLEmslD8ZPZfeT076pNU/v6lQoYJ+++03ffvttwoNDc3wWgQGBqpfv376888/NW7cOHl5udWtBgAAAAAAAAAAPITbLJPoaskUg8Ego9Ho7DCc6sKFC9qxY4eOHz+u69evy8fHRyVLllTNmjXVuHFjFSxY0NkhAgAAAAAAAACAfM7H2QFk1dixY50dAlIpXbq0Hn30UWeHAQAAAAAAAAAAkC63qQwDAAAAAAAAAAAAssu11h4EAAAAAAAAAAAA7IhkGAAAAAAAAAAAADwWyTAAAAAAAAAAAAB4LJJhKezcuVODBg1ydhgAAAAAAAAAAACwE4PJZDI5Owhnio6O1pdffqm5c+fqr7/+kiQZjUYnRwUAAAAAAAAAAAB78HF2AM6yevVqzZ07V//97391+/ZtmXOCBoPByZEBAAAAAAAAAADAXvJVMuzEiROaN2+eFixYoKioKEmySoLl8yI5AAAAAAAAAAAAj+PxybCEhAR9//33mjt3rjZu3CiTyWSV9KISDAAAAAAAAAAAwHN5bDJsz549mjt3rhYvXqyrV69KUrpLIZrbK1asqGeffTZP4wQAAAAAAAAAAIDjeFQy7OrVq/r66681d+5c7du3T5LSrQIztxcpUkRdunRRr1699OCDD+ZtwAAAAAAAAAAAAHAoj0iGrVu3TnPnztWKFSt069atTBNgBQoU0COPPKJevXrpscceU8GCBfM8ZgAAAAAAAAAAADie2ybDoqKiNH/+fM2fP18nT56UlH4VmPm5EiVK6L333lPXrl1VvHjxPI0XAAAAAAAAAAAAec9gSplBcnG3b9/WihUrNHfuXK1bt05JSUmZVoEZDAbL7/Xr19fu3bvzNmgAAAAAAAAAAAA4jZezA8iK/fv3a/jw4Spbtqy6d++utWvXymg0ymQyyWAwWH6k/yXBWrdurfDwcMsxAAAAAAAAAAAAyH9cdpnEmJgYLVq0SHPnztWuXbskpb8Morm9WrVq6t27t5577jlVrFhRktS3b9+8CxoAAAAAAAAAAAAuxeWSYZs2bdLcuXO1bNky3bx5M9MEWNGiRdWtWzf17t1bzZs3z/N4AQAAAAAAAAAA4LpcIhl29uxZhYeHa968eTp+/Lgk6z2/UjKZTPL29laHDh3Up08fPf744/L19c3zmAEAAAAAAAAAAOD6XCIZVqFCBZlMpkyrwOrWras+ffro2WefVenSpfM8TgAAAAAAAAAAALgXl0iGJSUlyWAwpJkAK126tHr27Kk+ffqoXr16zgoRAAAAAAAAAAAAbsglkmEpmUwmeXl56emnn1bv3r318MMPy9vb29lhAQAAAAAAAAAAwA15OTuAtJhMJv3555/6888/dfbsWWeHAwAAAAAAAAAAADdlMKXcqMtJvLy8bJZIND82GAx68MEH1bdvXz399NMKCAjI0dgmk0n169fX7t277Ro7AAAAAAAAAAAAXJdLVIZVqlRJJpPJsk+YORFmMpmUlJSkTZs2qV+/frrrrrvUu3dv/frrr84MFwAAAAAAAAAAAG7CJZJh//77r9auXatu3bqpYMGClsSYwWCwVHWZTCbFxcXp66+/VocOHVShQgWNHj1ahw4dcnb4AAAAAAAAAAAAcFEusUxiSleuXNFXX32lefPmad++fZJks4Simbm9QYMG6tu3r7p3764SJUpYjccyiQAAAAAAAAAAAPmXyyXDUtq9e7fmzJmjxYsX69q1a5IyTowVKFBAHTt2VJ8+ffTYY4/Jx8eHZBgAAAAAAAAAAEA+5tLJMLP4+Hh99913mjdvnjZt2mRZQtEsrWqxYsWKqVu3bpoxYwbJMAAAAAAAAAAAgHzKLZJhKR0/flxz587VggULdObMGUmZL6NobiMZBgAAAAAAAAAAkL+4XTLMLCkpSb/88ovmzJmjH3/8Ubdv37ZKikmyqiAzmUzy9fXVk08+qV69eqljx47y8vJyRugAAAAAAAAAAADII26bDEvp4sWLWrBggebNm6fDhw9LyrxarFSpUurevbueffZZNW7cOG8DBgAAAAAAAAAAQJ7wiGRYStu2bdOcOXO0dOlSxcbGSso8MVatWjU999xzevbZZ1W5cuU8jRcAAAAAAAAAAACO43HJMLO4uDh98803mjdvnrZt2yZJaS6jaGZ+LjQ0VJs3b867QAEAAAAAAAAAAOAwHpsMS+nw4cOaM2eOvvrqK124cEFS+okxg8Ego9GY5zECAAAAAAAAAADA/vJFMswsMTFR//3vfzVv3jytXr1aRqPRZglFkmEAAAAAAAAAAACeI18lw1I6c+aM5s+fr/nz5+v48eOWdpJhAAAAAAAAAAAAniPfJsNS2rhxo+bOnavvv/9et27dIhkGAAAAAAAAAADgIUiGpXDt2jUtWrRIL774orNDAQAAAAAAAAAAgB2QDAMAAAAAAAAAAIDH8nJ2AAAAAAAAAAAAAICjkAwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPBbJMAAAAAAAAAAAAHgskmEAAAAAAAAAAADwWCTDAAAAAAAAAAAA4LFIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPBbJMAAAAAAAAAAAAHgskmEAAAAAAAAAAADwWCTDAAAAAAAAAAAA4LFIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPBbJMAAAAAAAAAAAAHgskmEAAAAAAAAAAADwWCTDAAAAAAAAAAAA4LFIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPBbJMAAAAAAAAAAAAHgskmEAAAAAAAAAAADwWCTDAAAAAAAAAAAA4LFIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPJaPswMAPMnVq1e1adMmy+MKFSrI19fXiREBAAAAAAAAAOB8t27dUmRkpOVxy5YtVbRo0TyZm2QYkAPh4eEKDw+3ab906ZL++uuvvA8IAAAAAAAAAAA3smLFCj3xxBN5MhfJMCAHTpw4YVUBBgAAAAAAAAAAXBPJMCAHKleurJYtW9q0UxkGAAAAAAAAAIBrMZhMJpOzgwA8xe7du9WwYUPL4zfffFNlypRRnTp15O/v78TI4Cpu3ryp/fv3Wx5zb2SPp18/dzo/V4vVWfHk1byOnMcRY7va/QHXwb2RO55+/dzt/FwpXt4HXWt8V7o34Hq4P3LO06+du52fK8XrzFg84b2Q90HkpYMHD+o///mP5fGuXbvUoEGDPJmbyjDAjnx9fa0elylTRhUrVlSDBg1UuHBhJ0UFV3L9+nVdu3bN8ph7I3s8/fq50/m5WqzOiiev5nXkPI4Y29XuD7gO7o3c8fTr527n50rx8j7oWuO70r0B18P9kXOefu3c7fxcKV5nxuIJ74W8D8KZUn+e7kheeTYTAAAAAAAAAAAAkMdIhgEAAAAAAAAAAMBjkQwDAAAAAAAAAACAxyIZBgAAAAAAAAAAAI9FMgwAAAAAAAAAAAAei2QYAAAAAAAAAAAAPJaPswMAAAAAAAAAAMBRTCaTkpKSZDKZ7Dqu0WiUwWCwepyYmGjXORw9j73HzqtrAucwGAzy8vKyeo3dBckwAAAAAAAAAIBHSUpKUmxsrK5fv67Y2Fi7J8Kk5ERPqVKlLI9Pnz4tb29vt5rH3mPn1TWB8xgMBgUGBqpw4cIKDAyUl5d7LEBIMgwAAAAAAAAA4DGSkpIUGRmpGzduODsUwOOYTCbFxMQoJiZGhQoVUoUKFdwiIUYyDAAAAAAAAADgEfIyEebl5aWgoCCrx+42j73HzqtrAtdw48YNRUZGukVCzLWjAwAAAAAAAAAgi27evElFGJCHbty4odjYWGeHkSkqwwAAAAAAAAAAHiF1IsxgMKh06dIO2dvIaDRaJQECAwMdtmeYo+ax99h5dU3gHOa9+C5cuGC1D9/169dVuHBhJ0aWOZJhAAAAAAAAAACPEB8fb5X0Kl26tIoXL+6QuQwGg1Wix8fHxyGJH0fOY++x8+qawHnMf0/nz5+3tMXGxspkMslgMDgrrEyxTCIAAAAAAAAAwO0ZDAarahUpuTIJgH2l/rsymUxKSkpyUjRZQzIMAAAAAAAAAOCR7L00IoC0/65SJ6JdDf8lAAAA7iUyUoqKcnYUAAAAAAAAcBPsGQYAANxLWJhkMEjTpjk7EgAAAAAAALgBKsMAAID7iIyU5syRZs+mOgwAAAAAAABZQjIMAAC4j7AwKSEh+ScszNnRAAAAAAAAwA2QDAMAAO7BXBVmRnUYAAAAAAAAsoBkGAAAcA/mqjAzqsMAAAAAAACQBSTDAACA60tdFWZGdRgAAAAAwIVFRkYqiv/fCjidj7MDAPKDuLg4Z4cAF5H6XuDeyB5Pv37udH55Havfu++qYMqqMLOEBCW8+67ixo/P03jSm8dR8zpyHkeM7U73MvIW90buePr1c7fzc6V4nRWLJ7wPOmJ8V7o34Hq4P3LO06+du52fK8Wbeu6kpCRJkpdXch2I0WiUwWBwyNxGozHDx5I0YcIEGQwGTZ061aHzuMrYjow1P+vVq5e++eYbDRo0SNOmTXN2ODIajTKZTJL+9zcXExMjb2/vDPvdvHnT4bGlx2AyRwwgy8LDwxUeHm7THhcXp4iICMvjqVOnqmLFinkYGQB4Hr+LF/XQiy/KOzExzeeNPj76deZMxZcsmceRAQAAAABcicFgUKlSpSRJQUFBkqQyZcpk+gG9o0RFRalhw4aSpN27d6tcuXJOiQPur3Hjxjp27Jg+++wz9erVy9nhyGg06uzZs5KSk2CSdPHiRWWWbjp16pSGDh1qeXzgwAHVqlXLcYGmQGUYkAMnTpzQpk2bnB0GAOQL9y5blm4iTJK8ExNVbdky7R84MA+jAgAAAAAgY5MnT1bCnVVOJk+erI8//tjJEcEdXb9+Xf/8848kqV69ek6Oxn2RDANyoHLlymrZsqVNe+rKMABA7vhdvKiKa9dmelylNWt09KmnqA4DAAAAALiEqKgoffnll5bHCxcu1PDhw6kOQ7bt379fJpNJfn5+qlmzprPDcVskw4Ac6Nu3r/r27WvT/tdff6l27do27U2aNFFAQEAeRAZXFxcXpx07dlgec29kj6dfP3c6v7yK1e/VVzOsCjNLXR2WV9cur66DI+dxxNjudC8jb3Fv5I6nXz93Oz9XitdZsXjC+6AjxnelewOuh/sj5zz92rnb+blSvKljCQgIkJeXl2XPsMDAQPn4OOZjcKPRqBs3blgeFypUyLIk4+eff26pCpOkhIQEff755znaOyyjeXLL3mM7Mtb86tChQ5KkOnXqqFixYk6OJlliYqLlb8y8JGmNGjUyfa13797t8NjSQzIMyAMBAQEqXLiws8OAC+LeyB1Pv37udH4OiTUyUlq4MMuHp6wOc9a1y6t5HTmPI8Z2p3sZeYt7I3c8/fq52/m5Ury8D7rW+K50b8D1cH/knKdfO3c7P1eK18vLy+oDeW9v7zxLxpjnioyM1Ny5c22enzNnjt58802VL1/eLvM4QlpjX7lyRcuWLdPq1at16NAhnT59Wjdu3FBwcLDuv/9+DR06VM2aNUtzvHvvvVcnT57U/Pnz0ywukJILDxYsWKA+ffooPDzc6rlWrVpp06ZNGjt2rN566y1NnTpVixcv1rFjx3Tt2jVt2LBBrVq1shy/ceNGTZ8+XVu3btWlS5cUFBSkevXqqVevXurdu3ea1y07c+TmWmRHRESEJk2apI0bN+rcuXOWtrJly6pt27Z67733dM899+R6npwymUwyGAySZLmmQUFBmSae/f39HR5berycNjMAAEBGwsKkFN+iy4y5OgwAAAAAAGcKCwuzqgozS0hIUFhYmBMiyp0pU6aof//+Wrp0qaVKSZJOnTqlxYsXKzQ0NEcVb9kRHx+vVq1aaeTIkdq3b5+8vLwsyRizV155Ra1bt9Z3332ns2fPqlChQrp69arWr1+v//znP2rfvr1iYmJyNYejr4XJZNLo0aPVpEkTLVq0SNHR0TKZTJIkPz8/XbhwQYsXL1ajRo2s5kfmSIYBAADXExkpzZmT7W6V1qyR36VLDggIAAAAAIDMRUZGak4G/3929uzZioqKysOIcq9s2bIaO3asIiIidOPGDUVHR+vmzZs6fvy4hg0bJik5EbVnzx6HxTB9+nT9+eefmj9/vq5fv67o6GhdvHhRdevWlSRNmzZNkyZNkiQNHDhQZ86c0ZUrV3Tt2jVNmjRJPj4+Wr9+vQYMGJDjOfLiWowYMUITJkxQoUKFNG/ePEVGRlqe2759u3799VcFBgbq6tWrGjp0aI7myK9IhgEAANeTzaowM6rDAAAAAADOlF5VmJk7VocNHDhQ48aNU8OGDVWwYEFJksFgUJUqVTR58mQNHjxYRqNR06dPd1gMsbGxWrRokfr27WtZaq9EiRIqXry4bt68qbFjx0qSevTooVmzZumuu+6SlLyE5/Dhw/Xpp59Kkr799lvt2rUr23OYOfJarFq1SlOmTLHE2a9fPx04cEAmk0l+fn6677771LZtW7322muSpHXr1ik6Ojrb8+RXJMMAAIBryWFVmFmlNWtkOH3ajgEBAAAAAJC5zKrCzNyxOiwjnTp1kiRt2bLFYXPUqlVLjz32WJrPrV271pIUGjduXJrHDB48WGXKlJEkLVq0KNtzZFVursUbb7whSerTp49lnN27d0uS6tSpY9mPq3379pKSl1Q8evRoruLNT0iGAQAA15LDqjAz78RE+d5ZGgEAAAAAgLwyceLEDKvCzNyxOuz48eMaOXKkGjZsqKJFi8rb21sGg0EGg0GPPPKIJDk0wXf//fen+1xERIQkqUKFCrr33nvTPMbb21tt2rSxOj47c6TkiGuxZcsWHTx4UJI0fPhwS7s5GdagQQNLW1BQkOV3835iyJyPswMAAACwyGVVmFmBBQukMWOk8uXtEBQAAAAAABmLiorS3Llzs3z87NmzNWrUKJV3g//funz5cvXo0UO3bt2ytBUuXFh+fn4yGAxKSEjQlStXFBcX57AYSpcune5zFy5ckCSVK1cuwzHM19p8fHbmMHPUtVi9erUkqXLlyqpfv76l3bz3WMpk2Pnz5y2/u8P94ypIhgEAANdRqpSUg2+SxcTEWC1B8MADDyioZEl7RpYju3cn5/b27pViY6XAQKl+fal/fynFv2MBAAAAAG5u8uTJWaoKMzNXh02bNs2BUeXe5cuX1bdvX926dUtt2rTRmDFj1KRJE8ueWlLy3lUPPfSQQ+Pw9vZ26PhZmcOR18JcAdasWTNL240bN/T3339LkkJCQizt5j3P7rrrrkwTgPgfkmGwYTQadfDgQf3111+Kjo7WtWvX5O3traJFi6pUqVIKCQlR5cqVHTb/sWPHtHfvXkVGRiouLk7+/v4qW7as6tatq1q1ajlsXgCAC/DzS/7JJpOvrxKKFPnf45IlczSOvURESC+/LG3fbvvctm3SjBlS8+bS1KlSo0Z5Hx8AAAAAwH6ioqL05ZdfZrufO1SH/fTTT7p+/bqKFSumH374QYUKFbI55ty5c+n2N+9zFR8fn+4x165dy1WM5oquzJYmND+flQqwtOT2WmTk1KlTNrHt27dPRqNRPj4+qlu3rqV95cqVkqSOHTvKYDBISr6Gd999typWrKjdu3db2mNjY9WyZUtFRUVp69atuueee9SrVy998803iomJsUrkSVJ4eLj69euntWvXOjzBmddIhsFizZo1mjNnjn788UfduHEjw2NLlSqlbt26aeDAgapTp06u575586ZmzJihmTNnZrjpX/ny5fX8889r+PDhKlq0aK7nBQDA3latkrp0kTL4d76k5KRYixbS0qXSo4/mTWwAAAAAAPvLblWYmTtUh0VGRkqSqlevnmbyR5J+/fXXdPsXK1bMapzUkpKS0t3DK6sa3fmWaVRUlI4cOZLmvmFGo1EbNmyQJDVu3DhH8+T2WmTF9evXLb+bq8Xuu+8++fr6SpJ27Nih33//XZL0wgsvWI4tUqSIRo0apddff13Lly/XU089pcTERD3zzDM6cuSINmzYoHvuuUeS1LRpU3399dfas2ePQkNDLWPExcXprbfeUqdOnTwuESZJXs4OAM537NgxtWnTRh06dNDSpUszTYRJ0sWLFzVt2jTVq1dPgwYNylX2/vfff1fNmjX16quvZpgIk5L/gzZ+/Hjde++9+u9//5vjOQEAcITdu72ylAgzi49PTpzl8t/9AAAAAAAnyWlVmNns2bMzrWhypiJ3VmE5cuRImtVde/fu1aJFi9Ltb65oWr58uUwmk83zCxYsyPX5t2vXTiVKlJAkjRs3Ls1jZs2apTNnzkiSevTokaN5cnstMlKtWjVJ0oYNG2Q0GiX9Lxlm3i8sNjZW/fv3lyQ9/fTTVksqStKQIUNUtmxZjR8/XklJSRowYIDWrVun7777zpIwlJKTYZJskpATJ07UhQsX9PHHH+foHFwdybB8bvv27WrYsKElK55dJpNJs2bNUmhoaLobD2Zk2bJlat26tU6ePJmtfhcvXlTnzp31+eefZ3tOAAAc5fXX/bKcCDOLj5eGDnVMPAAAAAAAx8ppVZiZuTrMVbVv315eXl6Kjo7Ws88+q9OnT0tKjnvJkiVq3769goKC0u3frVs3SdKhQ4c0cOBAXb58WVJyBdSkSZM0aNAgFS9ePFcx+vv7W5Jgixcv1qBBg3T+/HlJyftuTZ06VcOHD7fE07BhwxzNk9trkZGuXbtKkk6ePKkRI0YoPj7eKhm2d+9etW7dWvv371e1atU0Y8YMmzH8/f01ZswY/fnnn2rXrp3Cw8M1d+5cdejQweq4+vXry9fX1yoZdvr0aX3yyScaOHCgatasmaNzcHUkw/Kx48ePq0OHDlall2ZlypTRCy+8oM8//1zffvutvvrqK33yySd65pln5JfGHiwHDx5U+/btdfv27SzPv3XrVnXv3t2mj5eXlx5//HFNnDhRixcv1tSpU/X888/blJ6aTCYNGTJEy5cvz/KcAAA4yrFjRbRzZ85WoN62Tbrzb1wAAAAAgJuIjIzMVVWYmStXh1WrVk2vvfaapOTChvLly6to0aIKDAxUt27dFBgYqKlTp6bbv23btnruueckSXPmzFHJkiVVrFgxFStWTK+88opeeOEFPfbYY7mOc8iQIRoxYoSk5CqwMmXKqHjx4ipSpIiGDRum27dvq3Xr1po9e3aO58jttchI165d9eidPRQ+++wzFS1aVPv27ZMkvfHGGwoJCVFERIQaNWqk9evXq1SpUmmO8/zzzys4OFjr16/XBx98oN69e9scU7BgQYWEhGjnzp2WttGjR8vHxyfdyjpPwJ5h+dhLL71kkwjz9fVVWFiYXnrpJRUoUCDNfpcvX9bw4cP11VdfWbXv27dPn3zyid58881M546Li1OPHj1sEmHVq1fX8uXL08w+T5w4Uf369bNaHtFkMqlfv35q3ry57rrrrkznBQDAUX79tVKu+s+dK91Z+QAAAAAA4AZKlSqlv/76y/I4MDBQ3t7eORorpxVFeSEsLEy1atXStGnTtH//ft2+fVtVq1bVk08+qddff1179uzJsH94eLgaNWqk+fPn6++//1ZSUpLuv/9+vfzyy+rSpYv69u1rlzg//fRTPfbYY5o+fbp+//13Xb58WUFBQapfv76ee+459e7dO8evj1lur0V6vLy8tGzZMn3yySdasGCBjh8/bllW0sfHR/fff7/69Omjfv36yccn/bTO9OnTLVVx5mUd09KsWTNNnTpVMTExOnr0qL788ktNmDAh3SSbJyAZlk8dOnRIv/zyi037okWL9NRTT2XYt0SJEvryyy8VGBiomTNnWj03ZcoUvfHGG/Lyyrjo8MMPP9SpU6es2qpWraqtW7emWxZbvHhxLVu2TN26ddP3339vab927ZpGjRql8PDwDOcEAMCR/v03/X9kZsXevfaJAwAAAACQN/z8/FSyZEnL46CgoFwnW1zVc889Z6nwSq1Vq1aWxI15v6uUvLy8NHToUA1NZ4+A8PDwdD/b3bhxY7bibN26tVq3bp2tPtmdI6vXIrsKFCigN998U2+++aZmzpypF198UbVr19b+/fuz1H/JkiUaMWKEXnnlFW3evFnvv/+++vXrZ7PimpS8b1hSUpJ2796tsWPHqlKlSpalJD0VyyTmU2ktLdi5c+dME2EpffLJJwoODrZqO3/+vLZv355hv6tXr2ratGlWbV5eXpo/f36m68N6e3tr1qxZNvN+9dVXOn78eJZjBwDA3uLjc/d/eGJi7BQIAAAAAABwa+YKs5CQkCwdv3HjRvXu3Vtdu3bVJ598onfffVfnzp3TlClT0jy+WbNmkqQxY8Zo06ZNmjBhgnx9fe0TvIsiGZZPHT582KatR48e2RojICBAnTt3tmn/+++/M+z39ddf2yzP2KlTJz3wwANZmrdEiRKWtVnNjEZjrtZ7BQAgt/z8bL/9lh0uvCIGAAAAAADIQ9lJhu3fv1+dO3dWs2bNtGDBAhkMBnXs2FGhoaGaOHGirly5YtOncuXKKl26tH777Tc1bdpU3bp1s/s5uBqSYfnUhQsXbNrS2qcrM2n1Ma9Jmp5vvvnGpm3QoEHZmrdPnz42merFixdnawwAAOypSpVruepfv7594gAAAAAAAO4rMTHRsjRiZsmwyMhIPfzwwypfvrxWrFhh9Zn5e++9p6tXr+qjjz5Ks2/jxo0lJe+1ZjAY7BS962LPsHyqYMGCWWrLTFqlk35+fukef+3aNW3bts2qLSgoSB06dMjWvCVLllSrVq20evVqS9vJkyd16NChHCX1AADIrXbtTuqXX6rkuP/zz9sxGAAAAAAA4JYOHz6s+Ph4SVL9TL45W6FCBUVFRaX5XJs2bdLdvyw2NlZ//PGHunTpotDQ0FzF6y6oDMunqlSx/bAuMjIy2+Ok1eeee+5J9/ht27bZbKLYrFmzHG0s2aJFC5u2zZs3Z3scAADs4Z57rqlx48Qc9W3eXGrQwM4BAQAAAAAAt1O7dm2ZTCaZTCYVLVrUIXOMGzdOsbGx6VaNeSKSYflUmzZtbNp++eWXbI/z888/Wz0uWLBghnt/7dq1y6atefPm2Z5XUpoZ67TGBwAgr0ycGK8MCqTT5OcnTZ3qmHgAAAAAAAAkKTo6WosXL9Yrr7yiTz/9VO+//36aRTOeimRYPtWpUydVqlTJqm3mzJk6efJklsf45ptvLBv5mT333HMqVqxYun0OHz5s01a1atUsz5lSWhVof//9d47GAgDAHho0SNLSpcpyQszPT1q6VGrUyLFxAQAAAACA/G3t2rXq2bOnFi9erDFjxujVV191dkh5imRYPuXj46PPP//cqi0uLk4dOnTQkSNHMu2/YsUK/ec//7FqCw4O1oQJEzLsd+LECZu21Em5rCpXrpzN8orHjx/P0VgAANjLo49KmzcnL32YkebNk4979NG8iQsAAAAAAORf3bp1k8lk0tmzZzVu3Dhnh5PnfJwdAJznkUce0dSpUzVs2DDLRnp///236tevr969e+vJJ59U/fr1Vbx4cd2+fVvnzp3TH3/8oQULFmj16tVWY5UsWVKrV69WqVKlMpzz3LlzNm0VKlTIUfze3t4qU6aM1QaB58+fz9FYablw4YIuXryYrT7Hjh1Lsz0uLs4eIcEDpL4XuDeyx9Ovnzudn6vF6qx40pv33nulX36R9u710pdfFtT+/V6KjTUoMNCkOnWS9NxzCapfP0mSdP16zuexB0eM7Wr3B1wH90buePr1c7fzc6V4Xe190N3msff4rnRvwPVwf+Scp187dzs/V4o39dxJScn/X8vLK7kOxGg0ymAwOGRuo9GY4WN3mMfeY+fVNYFzGY1GS07B/DcXExNjU7yS2s2bNx0eW3oMJnPEyNStW7cUFxenxMREFSpUSAEBAQ77D2leWr16tQYNGpRm1VZWPP7445oxY4bKli2b6bElSpRQdHS0VduFCxcyTaKlp2bNmjZLL8bExCgwMDBH46U0btw4jR8/PldjTJ06VRUrVsx1LAAAAAAAAAAyZjAYLJ8zBgUFSZLKlCmT6Qf0ALLHaDTq7NmzkpI/j5ekixcvKrN006lTpzR06FDL4wMHDqhWrVqOCzQFKsPSsH//fu3cuVM7d+7UkSNHdOLECUVFRSkxMdHm2OLFi6tSpUqqUqWK6tWrp8aNG6tx48YqXry4EyLPGfPSiEuWLNG8efO0fv36TPt4eXmpf//+Gjx4sOrVq5fludL6loi/v3+24s2s740bN+ySDAMAAAAAAAAAAO6PZJiSkycrV67Ujz/+qDVr1ujy5ctWz2eUzbx8+bIuX76sPXv2aNmyZZKSv4HQsGFDPfLII3riiSdUv359R4afayaTSb/88osWLlyozZs3Z6lPUlKS5s2bpxMnTuiVV15Rhw4dstTv9u3bNm1+fn7ZijeltJJhCQkJOR4PAAAAAAAAAAB4lnydDNu4caPmz5+v5cuXWyqW0kp8ZWUpxJT9TCaTdu7cqYiICL377ruqVauW+vTpoz59+qhkyZL2OwE7OH78uPr06aMtW7ak+XzJkiVVsmRJJSYm6tKlS7p69arlucTERK1Zs0Zr1qzRE088oTlz5uTo/HKz1GRafe218ufgwYPVpUuXbPU5duyYOnfubNPepEkTBQQE2CUuuLe4uDjt2LHD8ph7I3s8/fq50/m5WqzOiiev5nXkPI4Y29XuD7gO7o3c8fTr527n50rx8j7oWuO70r0B18P9kXOefu3c7fxcKd7UsQQEBMjLy8uyZ1hgYKB8fBzzMbjRaNSNGzcsjwsVKuSQJRkdOY+9x86rawLnSkxMtPyNmZckrVGjRqav9e7dux0eW3ryXTLs9u3bWrRokSZNmqT9+/dLsk6epJeYySjBYjAYMkzKHDhwQK+//rreeecdPffccxo+fLhq1qyZm9Owiz///FNt27bVpUuXrNqrVq2qV155RY8//rjKlStn9dyxY8f0/fffa8qUKZY1QSVp5cqVOnLkiNavX6+77ror3TkLFCigW7duWbXdvHkzx8saprXhXsGCBXM0VmqlS5dW6dKl7TJWQECAChcubJex4Fm4N3LH06+fO52fq8XqrHjyal5HzuOIsV3t/oDr4N7IHU+/fu52fq4UL++DrjW+K90bcD3cHznn6dfO3c7PleL18vKy+kDe29s7z5IxeTWXI+ex99h5ef2Rd0wmkyUnYn59g4KCMk0852bLpNzKN8kw87J+7733nqKiotJNgKVOehUtWlTly5dXmTJlVKhQIfn7+8vHx0c3b97UzZs3FR0draioKJ07d85mT7HU48bHx2vOnDmaO3eunnnmGb377ru69957HXTGGYuOjtYjjzxikwj7z3/+o+nTp6e7dGHVqlX1xhtvaODAgerVq5d++ukny3OHDh1St27dtGHDBktWOLVChQo5PBnmyt+aAQAAAAAAAAAAeStfJMOWL1+uUaNG6dixY5ZklzlRZTKZLG2VKlVS69at1bhxY9WrV0916tSxlPhlxmQy6dixY9q3b5/27dunzZs3a/v27Zb9q1LPt3TpUi1btkx9+vTRBx98YLcKpKwaNWqUTp8+bdX21FNPac6cOVlatrBYsWL6/vvv1apVK/3xxx+W9t9++03h4eH6z3/+k2a/EiVK6MqVK1ZtsbGxKlWqVA7OIrlvSgULFsxxYg0AAAAAAAAAAHietMt3PMTff/+tDh066JlnntHRo0ctpXsGg8Hye4sWLTRlyhQdP35c//77r+bNm6cXX3xRoaGhWU6EScnJrmrVqumZZ57Re++9p40bN+rq1atavXq1Bg4cqFKlStkk4hITEzVv3jxVr15dn332mZKSkhxyHVK7dOmSFi5caNXm5+enqVOnZmv/Lj8/P02bNs2mffLkyen2CQ4OtmmLiorK8pwpGY1Gq6Ua0xsfAAAAAAAAAADkXx6dDKtbt65+/fVXq/UrTSaTqlSpog8++EBRUVHatGmTXn75ZVWuXNnu8/v5+aldu3aaOXOmzp49q9WrV+upp56Sj4+PVUzXrl3T8OHDNXHiRLvHkJZff/3VZqnChx56yGZ/sKxo1KiRatWqZdW2f/9+mySVWZUqVWzaTp48me15JenMmTM2S1OmNT4AAAAAAAAAAMi/PDoZdvv2bcvvJpNJrVq10s8//6xjx47pzTff1F133ZVnsRgMBrVr107fffedIiMj9fbbb6to0aJWSTHzkoqO9ueff9q0NWvWLMfjpdU3rTkkqXr16jZtx44dy9G8//zzj01bjRo1cjQWAAAAAAAAAADwTB6dDJOSk2APP/ywtm3bpvXr16tDhw7ODkmlS5fWu+++q1OnTmnixIkqXrx4ns5/+fJlm7ac7tmVXt/o6Og0j23YsKFN27Zt23I079atW23aGjRokKOxAAAAAAAAAACAZ/LoZFjjxo21fv16/fjjj2ratKmzw7EREBCgkSNH6vjx43rzzTcVEBCQJ/P6+fnZtN28eTPH4924ccOmrVChQmke27x5c3l7e1u1bdu2TUajMdvzbtmyxabtwQcfzPY4AAAAAAAAAADAc/k4OwBH+uOPP5wdQpYEBQXp/fffz7P50qrk+vfff3M83vHjx7M0hyQVLVpUzZo10++//25pi4mJ0Zo1a/Twww9nec7o6Ght2LDBqq1ixYqqWbNmlscAAAAAAAAAAACez6Mrw5C2atWq2bT9/PPPORrrxo0b2rhxo1WbwWBQ1apV0+3TvXt3m7ZZs2Zla94FCxYoPj7eqq1Hjx7ZGgMAAAAAAAAAAHg+kmH50EMPPSQvL+uX/siRI1q6dGm2x5o0aZJiY2Ot2kJCQlS6dOl0+/Tq1UtBQUFWbT/88EOae4ClJTo6Wh9//LFVm7e3twYMGJDFqAEAAAAAAAAgD0RGSlFRzo4CyPdIhuVDJUqU0EMPPWTTPmjQIB06dCjL46xdu1bjx4+3aU+r8iulokWL6qWXXrJqS0pKUr9+/XTlypUM+yYlJWnQoEE6e/asVXvPnj11zz33ZDFyAAAAAAAAAMgDYWHJP3A6o9GoTz/9VCEhIQoICJDBYJDBYNCKFStyPXbPnj1lMBg0ePDg3AcKhyAZlk99+OGHMhgMVm3R0dFq1qyZwsPDlZiYmG7fGzduaMKECerUqZNu375t9Vz58uU1ZMiQTOd/6623VL58eau2I0eOKDQ0VIcPH06zz5UrV/TUU0/ZVLAVLlxYYbyhAAAAAAAAAHAlkZHSnDnS7NlUhzlIeHi4xo0bZ7OVT1qGDx+uV199VXv37lViYqKCg4MVHBwsPz+/XMexa9cuSVKjRo1yPRYcw8fZAcA5GjZsqDfeeMMmiXT9+nX169dPY8aMUceOHVW/fn2VKFFCSUlJunjxonbs2KGff/5Z0dHRNmMWKFBAc+fOlb+/f6bzBwYGatGiRWrTpo1V4u3w4cOqVauWHnvsMbVo0ULlypXTpUuXtG/fPi1evFhxcXE2Y82dO1dly5bNwVUAAAAAAAAAAAcJC5MSEv73+7Rpzo3HA4WHh2vTpk2SpFatWqV7XExMjGbNmiVJmjhxokaOHGlTLJJT169f19GjRyUlf+4O10QyzI5Onz6t/fv369q1aypVqpRq166d4d5ZzjZhwgRdu3ZNM2bMsHkuMjJSs2fPzvJYBQsW1IIFC9S+ffss92nRooUWLVqknj17WiXEkpKStHLlSq1cuTLD/gaDQZMnT9YzzzyT5TkBAAAAAAAAwOHMVWFms2dLo0ZJqVbLQt44fPiwZZWzF1980W6JMEnas2ePTCaT/Pz8VKtWLbuNC/timUQ72LJli5o3b66KFSuqU6dO6tmzp9q1a6dy5crpkUceydY+XHnt888/1zfffKOSJUvmeIz69etr586dme4VlpYuXbpo3bp1qlChQrb6lShRQt9//72GDh2a7TkBAAAAAAAAwKFSVoVJyb+z1YvT3Lhxw/J7YGCgXcc2L5FYt25d+fhQf+SqSIbdcfToUZUtW9byc++99yo+Pj7TfgsXLlSbNm20Y8cOmUwmqx+j0ahffvlFDRs21LJly/LgLHKmW7duOnHihGbPnq3Q0FAVKFAg0z5BQUF68skn9fPPP2v37t2qW7dujud/8MEHdfjwYX388ceqWrVqhseWK1dO77zzjo4ePaonn3wyx3MCAAAAAAAAgEOkrgozc/O9w06cOKHhw4erVq1aCgwMVKFChVSjRg0NGzZMp06dSrNPmzZtZDAYNG7cOCUmJmrSpEkKCQlRYGCgSpcurc6dO2vfvn2W42/cuKH3339ftWvXVkBAgEqUKKFu3brpn3/+sRo3PDxcBoPBskTi+PHjZTAYrH5OnDhhOS7lEoopj8loacWMRERE6Nlnn1W5cuX02muvSZJ27typ4OBg9ezZ0yZeOB9pyju+++47nTt3TlLyH8MTTzyR6cZ5+/bt08CBAy1L/KVVWmkymRQfH69evXppw4YNatq0qf2Dt4OAgAD1799f/fv3161bt7Rnzx79888/unr1qq5duyZvb28VLVpUxYoVU+3atVWjRg15edkvl1qoUCGNHDlSI0eO1JEjR7R3715FRkbqxo0b8vPzU9myZVW3bl3VqVPHbnMCAAAAAAAAgN2lrgozM1eHueHeYV9//bWef/553bp1S5Lk6+srLy8v/f333/r77781f/58fffdd2rbtm2a/W/fvq2OHTtq3bp1KliwoAoUKKCLFy9q5cqVWrdunTZs2KAqVaqoXbt22rNnj/z8/GQwGBQdHa0lS5Zo48aN2rlzpypWrChJ8vf3V3BwsKKjo3X79m0FBATYVHx5e3tbjktISNCVK1ckScHBwZZjihcvnq3rYDKZ9NZbbyksLMyyNKLJZJIk+fn56cKFC1q8eLF+/vlnbd26VTVr1szW+HAckmF3/PLLL1aPe/funWmfkSNHKiEhwSoJZr7xzczPxcfH64UXXtCePXvsuh6pI/j6+qpZs2Zq1qyZU+a/9957de+99zplbgAAAAAAAADIsfSqwszccO+wtWvXqnfv3vLy8tLrr7+uF198UZUqVZIkHTlyRO+8846WLl2qLl26aO/evSpWrJjNGJ9//rm8vb21dOlSPfHEE/Lx8VFERIS6d++u48ePa9iwYQoODtaVK1e0evVqPfTQQ5KkDRs2qEePHrpw4YJGjx6tr776SlLyamfdunVTq1attGnTJo0cOVLjxo2zmdd83MaNG9W6dWtJshTF5MSIESM0ZcoUBQQE6LPPPtNjjz2m0qVLS5K2b9+uixcvqnPnzrp69aqGDh2qtWvX5ngu2BfLJEoyGo3atWuXJUlVrFixTBNBe/bs0bp162QwGCzLIpYvX16TJ0/WL7/8ovnz56tx48ZWybH9+/dryZIlDj0XAAAAAAAAAICTpFcVZuZme4clJSXppZdeUlJSkqZPn66PPvpIlStXtiwzWL16dS1ZskSPP/64rl+/rsmTJ6c5ztWrV7VixQo988wzKlCggAwGgxo3bqzZs2dLkrZu3apffvlFa9euVfv27eXl5SUvLy+1bdtWYXeu17Jly3T79u28OnUbq1at0pQpUyRJ3377rfr166cDBw5YKsTuu+8+tW3b1rJs4rp16xQdHe20eGGNZJiSs9fmDfQMBoOaN2+eafXW119/bfW4XLly2rlzp4YOHar27durT58++v3339WhQweZTCbLeF9++aVjTgIAAAAAAAAA4DyZVYWZudHeYb/99puOHj2qkiVLqn///ukeZ15pbc2aNWk+/8ADD+iBBx6waW/ZsqV8fX0lSc8884yqVq1qc0yHDh0kSTdv3tTRo0ezfQ728sYbb0iS+vTpo06dOkmSdu/eLUmqU6eOfHySF+Jr3769pORV5JwZL6yxTKKSN/5LqVatWpn2WbZsmaUqzGAwaMyYMZZySDMfHx/NnDlT9957rxITE2UymfTrr7/q9u3bKlCggD1PAQCAXIuMjJTBYFB5N1qqAQAAAAAAV2GYODHjqjAzN9o77Pfff5ckXbt2TWXLlk33uIQ7533y5Mk0n2/SpEma7d7e3ipZsqROnz6txo0bp3lMyj2+zPt+5bUtW7bo4MGDkqThw4db2s3JsAYNGljagoKCLL+n3lYJzkNlmKSoO1l4841ZpUqVDI8/deqUVQLN399fzz77bJrHVqpUSa1atbKMffv2bf311192iBoAAPsKCwuzLD0AAAAAAACyzhAVJcPcuVnv4CbVYWfOnJGU/Ln2+fPn0/0xJ6lu3ryZ5jgpE0SpmSuq0jvG/Lw5DmdYvXq1JKly5cqqX7++pX3Pnj2SrJNh58+ft/zOF45dB5VhkmJjY60eZ/SHKSWXhpoZDAa1bt1ahQoVSvf40NBQq43yDh06ZPUHA88XFxfn7BDgIlLfC9wb2ePp18+Z5xcVFaU5d5ZyeOmll1SuXLkMj3e118JZ8eTVvI6cxxFju9r9AdfBvZE7nn793O38XCle3gdda3xXujfgerg/cs7Tr527nZ8rxZt67qSkJEmSl1dyHYjRaMx0S5ycMhqNlt/9Jk+WIStVYWYJCUqaMEGmqVOzNU9aj3Mjs7ETExMlJVd2bd26NUvjmbckSikpKSnTuLNyjNFotDrGXISSWd+Uz+Xk+u3atUuS1LRpU0v/Gzdu6O+//5Yk1a1b19K+c+dOSdJdd92lu+66y66vl6swGo1W116SYmJi5O3tnWG/9JKleYFkmGxfAH9//wyPN9/M5iUSH3rooQyPr1y5stVjNs1zf+Hh4QoPD7dpT++Nf8eOHQ6OCO6KeyN3PP365eX5zZo1y7KkwciRIzVw4MBs9Xe118JZ8eTVvI6cxxFju9r9AdfBvZE7nn793O38XCle3gdda3xXujfgerg/cs7Tr527nZ8rxWv+fM5c8BAbG5vpB/S5ZYiKUsEvv8x+vzlzFDN4sEyZfCE1tbSSTfaSeuxixYpJSl7+MCYmJtvjmRNBCQkJ6fY3J1Pi4+MznePmzZtWx2RlfHM/s5ych3mluKJFi1r679ixQ0ajUT4+PqpSpYqlffny5ZKkNm3aWApxrl27ppCQEJUvX16bNm2yJGhjY2P16KOP6syZM1q9erWqVKmigQMHatmyZYqMjLTJVSxatEgvvfSSli9frlatWmX7POzFaDRaJcEkafPmzZkuC3nq1CmHx5YelkmUdZmllHl2ctu2bVbfJmjRokWGxwcGBkqSpU9O/tjgWk6cOKFNmzbZ/ERERDg7NADItosXL1pVMK9Zs0aXLl1yYkQAAAAAALiPbFeF3WFISJDf5Mn2D8iOmjZtKil56T/zkoCuxFwBmFd7c6X8bH/fvn2SpOrVq8vX11dScgXZH3/8IUnq27ev5dgiRYpo+PDh2r9/v1atWiUpuequb9+++ueff/Ttt99atm9q1KiRjEaj/vzzT6u54+Li9P7776t9+/ZOTYS5K5JhkgoXLmz12LwOalpiYmKs/uj9/f0zXfIwIQf/IYRrq1y5slq2bGnz06hRI2eHBgDZtmzZMsuyB1LyP8aWLVvmxIgAAAAAAHAPOa0KMyu4cKEMp0/bMSL7atGihe6++25J0ujRozP9rNu8d1heMVcAXrt2zaHz3HPPPZKSq5/M1WjmZFW9evUkJVd5DR06VJL0+OOPq3HjxlZjDBgwQGXKlNFHH32kpKQkDRs2TJs2bVJ4eLhCQkIsxzVs2FCStHfvXqv+U6dO1cWLF/Xuu+/a/wTzAZZJVPLandL/Krf279+f7rFr1qyxrDNrMBjUuHFjS/Y5PVevXpX0v2UVzZVicF99+/a1yuyb/fXXX6pdu7ZNe5MmTRQQEJAHkcHVxcXFWS0dwL2RPZ5+/ZxxflFRUVq3bp1N+6+//qpPPvkk3b3DXO21cFY8eTWvI+dxxNiudn/AdXBv5I6nXz93Oz9Xipf3Qdca35XuDbge7o+c8/Rr527n50rxpo4lICBAXl5els9sAwMDbVYGsxej0ShTDqvCzAwJCQr6/PMM9w5LvQ9XoUKF7Lb0Y1bGnjFjhjp16qTt27frscce03vvvacHH3xQBQoUkCQdP35ca9eu1fz58/Xoo49q2LBhlr7msQoWLGhJXKVmfq38/PzSPcbM39/f6ph69erpp59+0rp163T9+vV0P8dIudxgZnOkpUePHlq1apUiIyM1btw4hYWF6cCBA5KS7/9//vlHgwYN0sGDB1WtWjXNmjXLZp6goCC98847Gjx4sJ555hlt2LBB8+fPV+fOna2OCw0Nla+vrw4cOGAZ4/Tp05o2bZoGDBjgEgUZiYmJltfNHGONGjUyvS93797t8NjSQzJMyZvbmZlMJq1evVq3b9+2/DGntHjxYstxBoNBDz74YKbjp640K1myZC4jhrsJCAiwqUAEJO6N3PL065cX5zd9+vQ0v9WVkJCg6dOna9q0aVkax9VeC2fFk1fzOnIeR4ztavcHXAf3Ru54+vVzt/NzpXh5H3St8V3p3oDr4f7IOU+/du52fq4Ur5eXl9UH8t7e3o7bMywyUl65qAoz85ozR3rzTal8+Swd78hzSmvs9u3ba+nSperdu7d27NihDh06qECBAipcuLBiY2N169Yty7GPP/54muOmfl1yekzq+Pr166dJkybp2LFjqlKlikqVKiU/Pz9J0pYtW1T+zjVNfU9kV/fu3bV48WKtWrVK06ZN0+zZsy2fp7z55puWrZcaNWqk5cuXWwpwUhswYIDGjx+vDRs26IMPPkiz4MLf318hISGKiIiwxPrOO+/Ix8dH48ePd/geeFlhzo9I/7ueQUFBmSaeU++BlpdYJlHS3XffreDgYMvjixcv6rPPPrM57uDBg1q5cqXVfmHt2rXLdPzU5YzmslIAAJwpMjJSc+bMSff52bNnKyoqKg8jAgAAAADAjZQqpet//aVrR4/q2tGjMp49K124kP2fqCjJxQsoOnfurGPHjmns2LFq0qSJAgMDdfXqVfn6+qpevXrq37+/li9frpEjR+ZpXNWqVdOGDRv0+OOPq1SpUrp8+bJOnjypkydPWm0JkVteXl5atmyZPvzwQ1WvXl1JSUmWfcp8fHx0//3364svvtC2bdssCbi0TJ8+XefPn5eUvI9Yepo1a6YjR44oJiZGu3fv1pdffqnRo0erVKlSdjun/IbKsDu6du2qzz77TAaDQSaTSaNGjdKNGzfUv39/lShRQlu2bNGAAQMsSyRKUoUKFfTAAw9kOvbu3bst40rJf6AAADhbWFhYhmt9JyQkKCwsLMvVYQAAAAAA5Ct+fjKlTGIFBUkuULXjKKVLl9a4ceM0bty4dI8xGo1WlWLr16/PtJLpxIkTmc5t/mw9Lc2aNdPKlSsz7N+qVasMx8iKAgUK6M0339Sbb76pmTNn6sUXX1Tt2rUz3HYppSVLlmjEiBF65ZVXtHnzZr3//vvq16+fChUqZHNs06ZNlZSUpN27d2vs2LGqVKmShg8fnqv48zsqw+4YMmSIChYsKCl577DExESNHTtW5cqVk5+fnx566CEdP37cktQyGAwaMmRIpuPu2bNHZ8+etTyuUqWKihUr5rDzAAAgKzKrCjOjOgwAAAAAAMDanj17JEkhISFZOn7jxo3q3bu3unbtqk8++UTvvvuuzp07pylTpqR5fLNmzSRJY8aM0aZNmzRhwgT5+vraJ/h8imTYHdWqVdNrr71myQ6bk14pf1Iuj1ilSpUsJcOWLVtm+d1gMCg0NNT+wQMAkE2ZVYWZmavDAAAAAAAAkCw7ybD9+/erc+fOatasmRYsWCCDwaCOHTsqNDRUEydO1JUrV2z6VK5cWaVLl9Zvv/2mpk2bqlu3bnY/h/yGZFgK7733nnr16mWVEEv5IyWXYxYvXlzff/+9ZSO+9CQlJenrr7+2WiKxTZs2jj0JAAAykdWqMDOqwwAAAAAAAJIlJiZalkbMLBkWGRmphx9+WOXLl9eKFSusqrvee+89Xb16VR999FGafRs3bixJ+vTTT60KdZAzJMNSWbhwoebPn6977rknzcqwzp07a8eOHapXr16mY61YsUInTpywSq516tTJ0acAAECGsloVZkZ1GAAAAAAAQLLDhw8rPj5eklS/fv0Mj61QoYKioqJ04MABFS1a1Oq5Nm3ayGQypfmZS2xsrP744w916dKF1ebsxMfZAbiiPn36qE+fPjp48KCOHz+umJgYlShRQo0bN87Wfl8xMTEaNmyY5XHp0qVVqlQpR4QMAECWZLcqzGz27NkaNWqUypcv74CoAAAAAAAA3EPt2rUtBTCOMm7cOMXGxqZbNYbsIxmWgfvuu0/33Xdfjvubk2oAALiK7FaFmZmrw6ZNm+aAqAAAAAAAAPK36OhorV69Wjt37tTkyZP18ccfq0qVKs4Oy2OwTCIAAPlETqvCzNg7DAAAAAAAwDHWrl2rnj17avHixRozZoxeffVVZ4fkUUiGAQCQT+S0KsyMvcMAAAAAAAAco1u3bjKZTDp79qzGjRvn7HA8DskwAADygdxWhZlRHQYAAAAAAAB3w55h2WQ0GhUdHa2bN29KkipWrOjkiAAAyFypUqXslsQKCgrKVYUZAAAAAAAAkJdIhmVi//79WrFihTZu3Kg9e/bo2rVrlucMBoMSExPT7Xvt2jUZjUbL48DAQBUsWNCh8QIAkBY/Pz/5+fnZbTySYQAAAAAAAHAXJMPSsXfvXr399tv6+eefLW0mkylbYwwdOlRfffWV5fGAAQM0c+ZMu8UIAAAAAAAAAACAjLFnWBpmzZql5s2b6+eff5bJZLIkwQwGg+UnK1577TVJsoyxZMkS3bp1y2FxAwAAAAAAAAAAwBrJsFTef/99DR48WLdu3ZLJZLIkv8wJrexUh9WuXVtt27a1PL527Zp++uknR4QNAAAAAAAAAACANJAMS+H777/X2LFjbZJgVatW1dChQzVp0iRVqFAhW2N269ZNkizVZKtXr7Z73AAAAAAAAAAAAEgbybA7bty4oSFDhlgSYSaTSUFBQfrqq6/0999/a/LkyRo2bJiKFy+erXGffPJJeXt7S0peLnHdunWOCB8AAAAAAAAAAABpIBl2x7Rp03T+/HmrRNhvv/2mnj175mrc4sWLq2bNmpbHx48f1/Xr13MbLgAAAAAAAAAAALKAZNgdX375pSURZjAYNGnSJNWtW9cuYzds2NBqr7FDhw7ZZVwAAAAAAAAAAABkjGSYpHPnzumvv/6yPK5YsaL69u1rt/Hvu+8+q8f//POP3cYGAAAAAAAAAABA+kiGSdq5c6fld4PBoIcfflheXva7NMWKFbN6fPXqVbuNDQAAAAAAAAAAgPT5ODsAV3DhwgVJsiyRGBISYtfxixYtKik50SZJMTExdh0fri8uLs7ZIcBFpL4XuDeyx9Ovnzudn6vF6qx48mpeR87jiLFd7f6A6+DeyB1Pv37udn6uFC/vg641vivdG3A93B855+nXzt3Oz5XiTT13UlKSJFmKHYxGo+VzWXszGo0ZPnaHeew9dl5dEziX0Wi0bA1l/puLiYmRt7d3hv1u3rzp8NjSQzJM0qVLl6weFy9e3K7j37p1y+qxPavO4Bzh4eEKDw+3aU/vjX/Hjh0Ojgjuinsjdzz9+rnT+blarM6KJ6/mdeQ8jhjb1e4PuA7ujdzx9OvnbufnSvHyPuha47vSvQHXw/2Rc55+7dzt/FwpXvPnc0FBQZKk2NjYTD+gt5cbN264/Tz2HjuvrgnyltFotEqCSdLmzZstCbL0nDp1yuGxpYdkmCRfX1+rx/Hx8XYdPzo6WtL/Ks9KlChh1/GR906cOKFNmzY5OwwAAAAAAAAAAJAJkmGSSpUqZfU4daVYbv31119Wj0mGub/KlSurZcuWNu1xcXGKiIhwQkQAAAAAAAAAACAtJMMkBQcHS/rfnl579uyx6/gbN26UwWCwlAjec889dh0fea9v377q27evTftff/2l2rVr27Q3adJEAQEBeRAZXF1cXJzV0gHcG9nj6dfPWee3d+9eLVy4UPv371dcXJwCAgJUp04d9e7dW/Xr13epWNPjrHjyal5HzuOIsV3t/oDr4N7IHU+/fu52fq4UL++DrjW+K90bcD3cHznn6dfO3c7PleJNHUtAQIC8vLwsW9UEBgbKx8cxH4MbjUarZQALFSrkkCUZHTmPvcfOq2uS3/Tq1UvffPONBg0apGnTpjk7HCUmJlr+xsxLktaoUSPT13r37t0Ojy09JMMkNW7cWN7e3kpKSpLJZNK6dessSxrm1pYtW3TkyBHLWMWLF08zWQLPFhAQoMKFCzs7DLgg7o3c8fTr5+jzi4iI0Msvv6zt27fbPLdjxw7NnTtXzZs319SpU9WoUaMMx3K118JZ8eTVvI6cxxFju9r9AdfBvZE7nn793O38XCle3gdda3xXujfgerg/cs7Tr527nZ8rxevl5WX1gby3t3eeJWPyai5HzmPvsfPy+nsycxLJnMtwtpT5E3M8QUFBmSae/f39HR5berycNrMLKVKkiJo0aWKp3Dpz5oyWL19ul7HHjBkj6X83R6tWrewyLgAAubFq1Sq1aNEizURYStu2bVOLFi20atWqPIoMAAAAAAD3t3v3bg0ePFihoaGqW7euQkNDNXjwYKdWxsA9Xb9+XUePHpUkNWzY0MnRuC+SYXc8/fTTkmRZznDEiBGKiYnJ1Zjjxo2zLJFo1q9fv1yNCQBAbkVERKhLly6Kj4/P0vHx8fHq0qULeyICAAAAAJCJiIgINW/eXA0bNtSMGTO0bds27d+/X9u2bdOMGTPUsGFDhYaG8v+xkWV79uyRyWSSn5+fatWq5exw3BbJsDsGDx6sMmXKWB5HRUXpkUce0fXr17M9VlJSkkaMGKH33nvPklwzGAyqV6+eHnnkEXuGDQBAtr388stZToSZxcfHa+jQoQ6KCAAAAAAA98cqLHCEXbt2SZLq1q3rsP3v8gOSYXf4+flp/PjxlsSVyWTS1q1bVatWLX311VdKSEjIdIyLFy9q1qxZql69uqZOnWpZdlFKrjgLCwtz5CkAAJCpXbt2ZfqP8vRs27aN5RwAAAAAAEjDnj171L17d49cheXKlSuaO3euunbtqjp16qh48eLy8/NTpUqV1LNnzww/Z7jnnntkMBgUHh6e7jF9+/aVwWBQ3759bZ5r1aqVDAaDxo0bp9u3b+v//u//1KhRIxUtWlQGg0EbN260On7jxo3q0qWLypUrJ19fX5UsWVJt27bV/PnzZTQa05w/O3Pk5lpkR0REhJ599lmVK1dOr732miRp586dCg4OVs+ePfXPP//YZZ78hDRiCv3799f27ds1b948S0Ls9OnT6tOnj4YMGaIGDRro1KlTVkmunj17Kjo6WidPntSRI0ckyfJ8yqqw0aNHq3379k45LwAAzObOnZvr/g0aNLBTNAAAAAAAeIY33ngjx6uwbN261UFR2ceUKVM0fvx4SZK3t7cKFy4sSTp16pROnTqlb775RpMnT3boijLx8fFq1aqVtm7dKh8fHwUFBVltTyRJr7zyiiZNmiQp+bP5IkWK6OrVq1q/fr3Wr1+vr776SitWrFBQUFCO53D0tTCZTHrrrbcUFhZmWRrRnG/w8/PThQsXtHjxYv3888/aunWratasmaN58iMqw1KZOXOmHn74YUsSy5zQun79ujZt2qSrV69ajjWZTPr222+1du1a/f333zKZTFb9zLp37653333XCWcDAIC1vXv3OrU/AAAAAACeZu/evdq5c2eO+rrDKixly5bV2LFjFRERoRs3big6Olo3b97U8ePHNWzYMEnJiag9e/Y4LIbp06frzz//1Pz583X9+nVFR0fr4sWLqlu3riRp2rRplkTYwIEDdebMGV25ckXXrl3TpEmT5OPjo/Xr12vAgAE5niMvrsWIESM0YcIEFSpUSPPmzVNkZKTlue3bt+vXX39VYGCgrl69ynYW2UQyLBUfHx+tWrVK77zzjlVllzm5lbIqzPw45TGpjxs3bpy+/vrrvD0JAADSERsbm6v+MTExdooEAAAAAADP8OWXX+aqf25XcXG0gQMHaty4cWrYsKEKFiwoKbnyqkqVKpo8ebIGDx4so9Go6dOnOyyG2NhYLVq0SH379pW/v78kqUSJEipevLhu3rypsWPHSpJ69OihWbNm6a677pIkBQQEaPjw4fr0008lSd9++61lD67szGHmyGuxatUqTZkyxRJnv379dODAAUuF2H333ae2bdtalk1ct26doqOjsz1PfkUyLA0Gg0Hjx4/X5s2bLVViaSW90kqAmX9atWqlzZs3a8yYMU4+GwAA/icwMDBX/dNbSgAAAAAAgPxq//79uerv7quwdOrUSZK0ZcsWh81Rq1YtPfbYY2k+t3btWktSaNy4cWkeM3jwYJUpU0aStGjRomzPkVW5uRZvvPGGJKlPnz6WccxVg3Xq1JGPT/KuV+btmEwmk44ePZqrePMT9gzLQPPmzfXjjz/qr7/+0nfffadNmzZp+/btaa79ajAYVL9+fbVr105PPPGEQkNDnRAxAAAZq1+/vrZt25ar/sgfIiMjZTAYVL58eWeHAgAAAAAuLS4uLlf93WEVluPHj+vzzz/Xhg0b9M8//ygmJkZJSUlWx0RFRTls/vvvvz/d5yIiIiRJFSpU0L333pvmMd7e3mrTpo2+/vpry/HZmSMlR1yLLVu26ODBg5Kk4cOHW9rNybCU+7en/KJy6pXskD6SYVlQq1Yt1apVS5KUlJSky5cv6/Lly7py5Yr8/f1VsmRJlSpVSr6+vk6OFACAjPXv318zZszIcf/nn3/ejtHAlYWFhclgMGjatGnODgUAAAAAXFpAQECu+rv6KizLly9Xjx49dOvWLUtb4cKF5efnJ4PBoISEBF25ciXXScGMlC5dOt3nLly4IEkqV65chmOYv+xpPj47c5g56lqsXr1aklS5cmWrLyKb9x5LmQw7f/685Xe+wJp1LJOYTV5eXipVqpRq1Kih5s2bq379+ipfvjyJMACAW2jQoIGaNWuWo77Nmze3+scXPFdkZKTmzJmj2bNnO/SbfQAAAADgCerUqZOr/q68Csvly5fVt29f3bp1S23atNHGjRt148YNXbt2TefPn9e5c+e0dOlSh8fh7e3t9DkceS3MFWApP7O5ceOG/v77b0lSSEiIpd2859ldd92VaQIQ/0MyDACAfOazzz6Tn59ftvr4+flp6tSpDooIriYsLEwJCQlKSEhQWFiYs8MBAAAAAJfWu3fvXPV35VVYfvrpJ12/fl3FihXTDz/8oJYtW8rf39/qmHPnzqXb37zPVVpbD5ldu3YtVzGaK7oy+zKn+fmsVIClJbfXIiOnTp2yiW3fvn0yGo3y8fFR3bp1Le0rV66UJHXs2FEGg0GS1KtXL/n4+OjmzZs2Y4eHh8tgMOjXX3+VlHy9S5QooZCQEKtlFmNjY9WwYUMFBwfrn3/+ydF5uDKSYQAA5DONGjXS0qVLs5wQ8/Pz09KlS9WoUSMHRwZXEBUVpTlz5lgeUx0GAAAAABmrV6+eGjdunKO+rr4KS2RkpCSpevXqKlSoUJrHmJMsaSlWrJjVOKklJSWlu4dXVpk/r4iKitKRI0fSPMZoNGrDhg2SlOPXKrfXIiuuX79u+d1cLXbfffdZVqbbsWOHfv/9d0nSCy+8YDm2adOmMhqNlmUVzeLi4vTWW2+pU6dOeuihhyRJRYoU0ahRo7R3714tX75ckpSYmKhnnnlGR44c0Y8//qh77rknV+fhikiGAQCQDz366KPavHmzmjdvnuFxzZs31+bNm/Xoo4/mUWRwtkmTJikhIcHymOowAAAAAMjcRx995JGrsBQpUkSSdOTIkTSru/bu3atFixal299c0bR8+XKrKiSzBQsW5PoLmO3atVOJEiUkSePGjUvzmFmzZunMmTOSpB49euRontxei4xUq1ZNkrRhwwYZjUZJ/0uGmZOlsbGx6t+/vyTp6aeftlpSsWnTppJkk1icOHGiLly4oI8//tiqfciQISpbtqzGjx+vpKQkDRgwQOvWrdN3333nsV+GJhmWRbdv39aff/6p9evXa+nSpVq4cKEWLlzo7LAAAMixRo0aaevWrdq1a5cGDx6s0NBQ1alTR6GhoRo8eLB27dqlrVu3euw/gmDr4sWLaf77huowAAAAAMhYSEiIvvnmG49bhaV9+/by8vJSdHS0nn32WZ0+fVpS8hcnlyxZovbt2ysoKCjd/t26dZMkHTp0SAMHDtTly5clJVdATZo0SYMGDVLx4sVzFaO/v78lCbZ48WINGjRI58+fl5S879bUqVM1fPhwSzwNGzbM0Ty5vRYZ6dq1qyTp5MmTGjFihOLj462SYXv37lXr1q21f/9+VatWTTNmzLDqX79+ffn6+lolw06fPq1PPvlEAwcOVM2aNa2O9/f315gxY/Tnn3+qXbt2Cg8P19y5c9WhQ4ccxe8OSIZlID4+XtOmTVPbtm1VtGhRhYSEqF27durevbv69eunfv36Zdh/3bp1WrZsmeXn2LFjeRQ5AABZ16BBA02fPl2///67/vzzT/3++++aPn26Sy/TAMdYtmyZVVWYGdVhAAAAAJA5T1yFpVq1anrttdckJf9/xvLly6to0aIKDAxUt27dFBgYmGF1W9u2bfXcc89JkubMmaOSJUuqWLFiKlasmF555RW98MILeuyxx3Id55AhQzRixAhJyVVgZcqUUfHixVWkSBENGzZMt2/fVuvWrTV79uwcz5Hba5GRrl27Wu6Hzz77TEWLFtW+ffskSW+88YZCQkIUERGhRo0aaf369SpVqpRV/4IFCyokJEQ7d+60tI0ePVo+Pj7pVss9//zzCg4O1vr16/XBBx/keu87V0cyLB0zZsxQpUqVNGzYMG3cuFE3b96UyWSy+snMxo0b1aVLF8vPyJEj8yByAACA7Lt48aLWrl2b7vNUhwEAAABA5jxxFZawsDAtXLhQTZo0kb+/v27fvq2qVatq9OjR2rNnj8qWLZth//DwcE2ZMkX169eXv7+/kpKSdP/992vJkiV2XSby008/1fr16/X0008rODhYsbGxCgoKUuvWrTVv3jytXbs2x5VbZrm9Funx8vLSsmXL9OGHH6p69epKSkqy5CB8fHx0//3364svvtC2bdtUvnz5NMdo1qyZjhw5opiYGO3evVtffvmlRo8ebZM4M5s+fbqlgs68BKQn83F2AK7m5s2bev755/Xtt99abjaDwSCDwWB1XFaSYUOHDtX//d//6datWzKZTPr555916dIllSxZ0iGxAwAA5NSyZcuUmJiY7vPm6rBp06blYVQAAAAA4J4aNGjgUSuuPPfcc5YKr9RatWpl+bzcvN9VSl5eXho6dKiGDh2aZv/w8HCFh4en+dzGjRuzFWfr1q3VunXrbPXJ7hxZvRbZVaBAAb355pt68803NXPmTL344ouqXbu29u/fn6X+TZs2VVJSknbv3q2xY8eqUqVKluUhU1uyZIlGjBihV155RZs3b9b777+vfv36qVChQjmK3R1QGZaCyWRSjx49LIkwcxIsuxVhZqVKldLTTz9t6ZOYmKgVK1Y4KHoAAICcyawqzIzqMAAAAAAAHG/Pnj2Skveiy6pmzZpJksaMGaNNmzZpwoQJ8vX1tTlu48aN6t27t7p27apPPvlE7777rs6dO6cpU6bYJ3gXRTIshXHjxum///2vJFmSYAUKFNDzzz+vZcuWac+ePTYbzWWmS5culvEkZemDJgAAgLyUWVWYGXuHAQAAAADgeDlJhlWuXFmlS5fWb7/9pqZNm6pbt242x+zfv1+dO3dWs2bNtGDBAhkMBnXs2FGhoaGaOHGirly5YrdzcDUkw+44ffq0Jk6caElamUwm1a1bV4cOHdLs2bPVuXNn1atXTwULFszWuB06dJC/v79lzA0bNtg9dgAAgJyKiorK1pd1qA4DAAAAAMBxEhMTLUsjZicZJkmNGzeWlLx/WuqtnyIjI/Xwww+rfPnyWrFihVXV2HvvvaerV6/qo48+ymX0ros9w+4ICwvTrVu3LBVhVatW1ebNm3O9oZ6vr6/q16+vbdu2SZIuX76ss2fPqkyZMvYIGwAAIFcmTZqUpaowM/YOAwAAAADAcQ4fPqz4+HhJUv369bPcLzY2Vn/88Ye6dOmi0NBQm+crVKiQ7pdb27Rpk+O9ztwFybA7li9fbkmEGQwGzZkzJ9eJMLOGDRtakmFS8s1MMix/iYuLc3YIcBGp7wXujezx9OvnTufnarE6K568mtdR80RFRWnhwoXZ7jd79my99NJLKleuXJrPu9r9AdfBvZE7nn793O38XCle3gdda3xXujfgerg/cs7Tr527nZ8rxZt67qSkJEmSl1fyomhGo9GmQsZejEZjho/dYR57j51X18ST1axZ0+pLq1m9hmPGjFFsbKw+/PBDh193o9FoSZ6Z/+ZiYmLk7e2dYb+bN286NK6MGEyenu7LgkOHDqlWrVqWZFjDhg21c+fONI8NCQnRn3/+aUmaZeWmmjx5sl555RVJyXuHzZs3T3369LHrOSBvhYeHKzw83KY9Li5OERERlsdTp05VxYoV8zAyAACybtasWfr5559z1PeRRx7RwIED7RwRAAAAAOScwWBQqVKlJMlS6FCmTJlMP6AH3NWVK1e0bt067dmzRzNmzNC7776rIUOGOHxeo9Gos2fPSkpOgknSxYsXM60uO3XqlIYOHWp5fODAAdWqVctxgaZAZZikgwcPWn43GAxq166dXccvWrSo1ePr16/bdXzkvRMnTmjTpk3ODgMAgBy7ePFitvYKS23NmjV66qmnVLJkSTtGBQAAAAAAsmrDhg0aMGCAgoOD9frrr+dJIsxdkQxT8odBkizVXtWqVbPr+OZvIZjLcWNjY+06PvJe5cqV1bJlS5v21JVhAAC4qmXLlmVrr7DUEhMTtWzZMqrDAAAAAABwkqeeekpPPfWUs8NwCyTDlFxKmFKRIkXsOr45+WVOtvn5+dl1fOS9vn37qm/fvjbtf/31l2rXrm3T3qRJEwUEBORBZHB1cXFx2rFjh+Ux90b2ePr1c6fzc7VYnRVPXs1r73mioqK0bt26XMf166+/6pNPPrHZO8zV7g+4Du6N3PH06+du5+dK8fI+6Frju9K9AdfD/ZFznn7t3O38XCne1LEEBATIy8vLsmdYYGCgfHwc8zG40WjUjRs3LI8LFSrkkCUZHTmPvcfOq2sC50pMTLT8jZmLgWrUqJHpa717926Hx5YekmGSChcubPXYvMalvZgrz8xKlChh1/Hh+gICAmzuM0Di3sgtT79+7nR+rhars+LJq3lzO8/dd9+tqKgoScn/7tmyZYvluQceeMDyD9msCAoKyvSLPq52f8B1cG/kjqdfP3c7P1eKl/dB1xrfle4NuB7uj5zz9GvnbufnSvF6eXlZfSDv7e2dZ8mYvJrLkfPYe+y8vP7IO+bCH0mW1zcoKCjTxLO/v7/DY0sPyTBJpUuXlvS/ZQzNG7/Zy65du6wes7cGAABwJj8/P0sCy9fX16oqvmTJki7zf2IBAAAAAADswcvZAbiC1Ev77Ny5025jG41Gbdy40ZJok6S6devabXwAAAAAAAAAAACkj2SYpMaNG1vWtDWZTFq7dq1ln6/c+vbbb3X+/HnL4ypVqqh8+fJ2GRsAAAAAAAAAAAAZIxkmqUCBAmrVqpVMJpOk5E0XZ8yYketxr1+/rrFjx8pgMFjW0HzooYdyPS4AAAAAAAAAAACyhmTYHX369JEkS+Jq/PjxOnjwYI7Hu337tnr16qV//vnHqn3IkCG5ihMAAAAAAAAAAABZRzLsjmeeeUYhISGSkhNiN27cUNu2bXO0f9g///yjBx98UD/++KNVVdijjz6q2rVr2zt0AAAAAAAAAAAApINkWAqTJ0+Wt7e3pOSE2Pnz5xUaGqr+/ftr+/btSkxMTLfv+fPntXTpUvXo0UM1a9bUjh07LMsuSlJQUJD+7//+z+HnAABAfhAZGamoqChnhwEAAAAAAAA34OPsAFxJixYtNG3aNA0aNEgGg0EGg0FGo1Hz58/X/PnzVaBAAUmySnKVLVtWV65cUUJCgqXN/HzKqrD58+eratWqeXtCdmA0GvXnn3/q8OHDOnfunOLi4uTr66vChQurcuXKuvfee1WlShW7zhkVFaVdu3bp33//VWxsrHx9fRUcHKzatWurfv368vIihwsA+V1YWJgMBoOmTZvm7FAAAAAAAADg4kiGpTJw4EBFR0fr7bfftiSyzMmtlAkvKTnpde7cOZsxDAaD5XkfHx9NnTpVTz75pOODt6MNGzboiy++0E8//aTr169neGzJkiUVGhqqRx55RM8884xKlCiR7fnMScfp06dr79696R5XokQJ9e7dW6+++qrKlSuX7XkAAO4vMjJSc+bMkSSNGjVK5cuXd3JEAAAAAAAAcGWU2KRh1KhRWr16tUqXLm1JiGXnR0pOhJUsWVK//PKLBg0a5OQzyrpDhw6pVatWatOmjb755ptME2GSdOnSJf33v//VoEGD9PPPP+dozpCQEA0YMCDDRJgkXb58WZMmTVKNGjU0e/bsbM8FAHB/YWFhSkhIUEJCgsLCwpwdDgAAAAAAAFwcybB0tG3bVkePHtVHH32kMmXKyGQyWX7SkvL5woULa9y4cfrnn3/Upk2bPI485xYuXKiGDRtq06ZNeTbn1q1b1bRpU+3fvz9b/WJjYzVw4EC98cYbDooMAOCKUlaFSdLs2bPZOwwAAAAAAAAZYpnEDAQGBuq1117T8OHDtXXrVm3atEm///67oqKidPnyZV25ckX+/v4qWbKkgoOD1bRpU7Vr104tW7ZUoUKFnB1+tkyaNEmvvPKKTbvBYFBISIjatWuncuXKqXTp0kpMTNSVK1d0+PBh7d27V3/88YcSExOzPeexY8f0yCOPKCYmxua51q1bq127dqpUqZKuXbumgwcP6uuvv9aVK1esjps4caLKlCmj4cOHZ3t+AID7MVeFmZmrwz788EMnRgUAAAAAAABXRjIsCwoUKKCWLVuqZcuWzg7FIRYvXqxXX33Vpr1r164KCwtTlSpVMux//fp1/fTTT5ozZ468vLJWbJiUlKQePXro2rVrVu133XWXvv/+e4WGhtr0CQsL06uvvqpZs2ZZtb/++utq06aN6tatm6W5AQDuKXVVmNns2bP10ksvOSEiAAAAAAAAuAOSYZKio6N14MABq7bmzZurQIECTooo7xw5ckQDBw60Wv6xQIEC+vrrr9WlS5csjVG4cGF1795d3bt3T3cZydTmzp2riIgIq7bixYtr27Ztqly5cpp9AgICNHPmTBUqVEiTJk2ytN++fVtDhw7Vxo0bszQ3AMA9pa4KM0tISNCkSZPUqVMnJ0QFAAAAAAAAV8eeYZKWLVum1q1bW36ef/75fJEIk6QXX3xRsbGxVm2LFy/OciIsNYPBkOkxRqNREyZMsGn/7LPP0k2EpTRhwgTVqlXLqm3Tpk367bffshwnAMC9pFcVZrZgwQJdunQpDyMCAAAAAADuxGg06tNPP1VISIgCAgJkMBhkMBi0YsWKXI/ds2dPGQwGDR48OPeBwiFIhkm6dOmSTCaTparp6aefdnJEeWPVqlVav369VVvv3r0dfv6//PKL/v33X6u2unXrqmfPnlnq7+vrq/Hjx9u0z5gxwy7xAQBcT3pVYWYJCQlatmxZHkYEAAAAAACcLTw8XOPGjcvSqmHDhw/Xq6++qr179yoxMVHBwcEKDg6Wn59fruPYtWuXJKlRo0a5HguOQTJMsiTBzFVNme2R5Sk++ugjq8e+vr765JNPHD7vN998Y9P2wgsvZGuMxx9/XHfddZdV28qVK3Xjxo1cxQYAcD2ZVYWZrVmzhuowAAAAAIBL2L1bGjxYCg2V6tZN/t/Bg5PbYT/h4eEaP358psmwmJgYzZo1S5I0ceJExcfH69y5czp37pw6duyYqxiuX7+uo0ePSpIaNmyYq7HgOCTDJBUpUkTS/5JiJUqUcGY4eeLvv//Wli1brNoeffRRlSpVyqHzmkwmrVmzxqY9u9VoBQoU0BNPPGHVdvPmTW3atClX8QEAXE9mVWFmiYmJVIcBAAAAAJwqIkJq3lxq2FCaMUPatk3avz/5f2fMSG4PDU0+Dnnn8OHDun37tqTkrYOyst1PVu3Zs0cmk0l+fn422/vAdZAM0/8qwcx/APnhW+VLly61aevRo4fD5/3777914cIFq7Zq1aopODg422O1aNHCpm3z5s05jg0A4HqyWhVmRnUYAAAAAMBZVq2SWrSQtm/P+Lht25KPW7Uqb+KCrFYUCwwMtOvY5iUS69atKx8fH7uODfshGabkdTxTZoIPHz7sxGjyxtq1a23amjVr5vB5zf9hSKl58+Y5Gis0NDRL4wMA3FdWq8LMqA4DAAAAADjDnj3e6t7dS/HxWTs+Pl7q0sW9KsROnDih4cOHq1atWgoMDFShQoVUo0YNDRs2TKdOnUqzT5s2bWQwGDRu3DglJiZq0qRJCgkJUWBgoEqXLq3OnTtr3759luNv3Lih999/X7Vr11ZAQIBKlCihbt266Z9//rEaNzw8XAaDwbJS2Pjx42UwGKx+Tpw4YTmuVatWlr4pj0nZnh0RERF69tlnVa5cOb322muSpJ07dyo4OFg9e/a0iRfORzJMUqlSpdS0aVOZTCaZTCb9+OOPzg7JoYxGo/744w+rtpIlS6pcuXKWx9euXdP06dPVqVMnVahQQb6+vgoMDFTlypXVvHlzvfHGG1q3bp2SkpKyNXdaicaqVavm6DwqVqxok2n/+++/czQWAMD1ZLcqzGzNmjU6ffq0AyICAAAAACBtb7zhr/j47C29Fx8vDR3qoIDs7Ouvv1aNGjU0ZcoUHTx4UImJiZKSP4+dOnWqateuneb2OGa3b99Wx44d9corr+jgwYOSpIsXL2rlypV64IEHFBERocuXL+uBBx7QO++8o3/++Ucmk0nR0dFasmSJQkNDrRJu/v7+Cg4OVoECBSRJAQEBCg4Otvrx9va2HFesWDFL35THFC9ePFvXwWQyafTo0WrSpIkWLVqk6Ohoy/ZLfn5+unDhghYvXqxGjRrp0KFD2RobjkUy7I4hQ4ZYfj9+/LgWLVrkxGgc68iRI7p165ZVW7Vq1Sy/f/HFF6pQoYKGDBmin376SVFRUUpISFBcXJxOnjyp7du3a+LEiXrooYdUt27dbH0D/8SJEzZtlSpVytF5eHt7WyXwJCkqKsqy9isAwL1ltyrMzPxNMwAAAAAA8sLevd7auTNny+Nt2ybt3m3ngOxs7dq16t27t4xGo15//XX9+++/unnzpuLi4nT48GF16dJFMTEx6tKlS7oVYp9//rn27t2rpUuXKjY2VjExMdqxY4fuvvtuxcbGatiwYRowYICuXLmi1atXKy4uTrGxsfr1119VqlQpXbhwQaNHj7aM161bN507d86yetjIkSN17tw5q58KFSpYjkv5GXbKY7K7usyIESM0YcIEFSpUSPPmzVNkZKTlue3bt+vXX39VYGCgrl69qqHukunMJ1jA8o6ePXtq1qxZ2rx5s0wmk4YPH66GDRuqevXqzg7N7o4fP27TVqRIEd26dUvPPPOMVmVjsdq//vpLTz/9tAYMGKDp06dbMvHpOXfunE1bhQoVsjxfWn1PnjxpeWw0GnXp0iWVKVMmx2OaXbhwQRcvXsxWn2PHjqXZHhcXl+t44BlS3wvcG9nj6dfPnc7P0bFGRUXlqCrMbMGCBRoxYoTNlybsLa9eM0fO44ix3eleRt7i3sgdT79+7nZ+rhSvs2LxhPdBR4zvSvcGXA/3R855+rVzt/NzpXhTz21eycrLK7kOxGg0Wm2RY09Go1GS9OWXBXM1zpw5SfrsM1Om86T3ODcyGzspKUkvvfSSkpKSNH36dA0YMMDSLiWv+rV48WLFx8frhx9+0Keffqr33nvPZp6rV69q48aNeuCBByz9GzRooJkzZ6p9+/baunWr/P39tWfPHlWtWtVSbdWqVSt9+OGHGjBggJYtW6b4+Hirz6DNxyUlJWV4XVI+l9Prt2rVKk2ZMkWStGjRInXq1EkbN26UyWSSn5+fqlevrlq1aunVV1/V+PHjtW7dOl28eDHb1WfuwGg0Wl17SYqJiZG3t3eG/W7evOnw2NJDMiwFc7nlv//+q0uXLql169aaO3euHn74YWeHZldnz561aQsMDNRzzz1nkwgzGAwqXbq0ihcvrqtXr+r8+fNpLo04e/ZsnTlzRv/9738tbzRpiY6OTnPunEqr7+XLl+2SDPv88881fvz4XI8jSTt27LDLOPA83Bu54+nXz53Oz96xzpo1K0dVYWYJCQkaOXKkBg4caMeoMpdXr5kj53HE2O50LyNvcW/kjqdfP3c7P1eK11mxeML7oCPGd6V7A66H+yPnPP3audv5uVK85uRYUFCQJCk2NjbTD+hza//+3I2/a1eSYmJis3z8jRs3cjVfdsbesmWLjh49qhIlSqhr166KiYlJs98zzzyjH374QWvWrLFKhpkTT82aNVO9evVs+jdo0EC+vr66deuWHn/8cQUHB9scY67+unnzpvbu3asaNWrYjJ+QkJBubOa+Zhkdl5FRo0ZJknr06KEHH3xQMTEx2r59uyTpvvvus8xx//33S0pO1O3bt0+NGjXK0XyuzGg0WiXBJFkKjTKSXuVgXmCZxBSCg4O1detWtWjRQlJyFdOjjz6qhx56SIsXL06zqskdXblyxabtxx9/1NKlSy2PS5QooU8//VRRUVE6d+6cDh48qDNnzuj8+fP64osv0vym/Y8//qhx48ZlOHda3xLx9/fP/klk0NeRbwYAAMe7ePGi1q5dm+tx1qxZo0uXLtkhIgAAAAAA0hcXl7vKs9hYx1Su2YM52XP9+nXVrFlT1atXT/Nn2LBhkmS1bGBKDRs2TLPd29tbJUqUkJScGEtL6dKlLb9fvXo1p6eSK9u2bdPhw4clSS+++KKlfd++fZKkunXrWtpSFnBklhxC3qEy7I42bdpYfjcYDPL29lZSUpJMJpM2bNigDRs2SEpOmJUuXVqFCxeWj0/2L5/BYNC6devsFndOpN4vTLLOjNevX1+//PKLgoODbY4rWbKkBgwYoO7du+uJJ56wXBez999/X927d9d9992X5txp7efl5+eX3VOwSCsZlptKAgCA8xUpUkRz5861y1i5+cIFAAAAAABZERCQu4RHYKDrJkzMBSK3b9/WhQsXMj0+vWXwMlodzFy5l94xKT+HT0xMzDQGR1i/fr0kqWLFiqpTp46lff/+/ZKkevXqWdpSbr1TtmzZPIoQmSEZdsfGjRvTXDvWYDBYZW/NG+vlZJ1Zk8nksPVpsxtHekqXLq01a9aoVKlSGY4RFBSkVatWKSQkREeOHLEaOywsTAsXLsxyPLm5Jmn1tVe2ffDgwerSpUu2+hw7dkydO3e2aW/SpIkCAgLsEhfcW1xcnNXSAdwb2ePp18+dzs/VYnVWPHk1ryPnccTYrnZ/wHVwb+SOp18/dzs/V4qX90HXGt+V7g24Hu6PnPP0a+du5+dK8aaOJSAgQF5eXpatXAIDA3NU1JAVRqNRN27cUJ06Ru3cmfM5Gjb0sizrmNE8ZoUKFbLb0o+ZjW3+vUmTJtq6dWu2xzP3L1iwYLrnaH6t/Pz8MrwOUvKXXlMek5Xxzf3MMpsjLX/99ZckqXnz5pb+N27c0NGjRyUlLwNpbj906JAk6a677lL16tVdIidgb4mJiZbXzXzeNWrUyPS+3L17t8NjSw/JsDSkTlp52s2acoPB1CZOnJhpIsysUKFC+vzzz/XQQw9ZtS9evFjTp09P8z8qac2dm03z0upbsGDuNqw0K126tFUJbm4EBASocOHCdhkLnoV7I3c8/fq50/m5WqzOiiev5nXkPI4Y29XuD7gO7o3c8fTr527n50rx8j7oWuO70r0B18P9kXOefu3c7fxcKV4vLy+bZI6j9wzr3TtB8+b55rh///5eyk6Ijjyn1GOXKVNGUvJeT7mZM/XrktNjUsdn/uw+s75pJfiyw7z8Y3BwsKX/gQMHZDQa5ePjo5CQEEv7Dz/8IEnq2LGjJRHbq1cvffPNN4qJibFZxSY8PFz9+vXT2rVr9dBDD+natWu6++67VbFiRe3evdtyjrGxsWrZsqWioqK0detW3XPPPdk+D3tJmUMxn3dQUFCmiWdnruDDnmGpmKuKTCaT3X9cRXrf0ihZsqR69OiRrbHatm2rmjVrWrUlJibq999/T/P4QoUK2bTZOxnmyt+aAQAAAAAAAOBZ6tUzqnHjnC3f17y5lM5WWS7h/vvvl5S8YlpERISTo7Flrk7Kq8/fr1+/bvndXOV03333ydc3ORm6Y8cOy2fjL7zwguXYpk2bymg0as+ePVbjxcXF6a233lKnTp0sRSdFihTRqFGjtHfvXi1fvlxS8mfuzzzzjI4cOaIff/zRqYkwd0Vl2B0PPvigx1WApce8IWFqLVu2zFFVVbt27Syln2ZbtmxRx44dszR3bGxstufMqG965wcAAAAAAAAAjvDRRzf1yCOBio/P+mfMfn7S1KkODMoOWrdurapVq+rYsWMaMWKE1q1bl+FnyNHR0RmuTGZv5orEq1evOnSeatWq6cCBA9qwYYOMRqO8vb0tybAGd7KZsbGx6t+/vyTp6aefVrNmzSz9mzZtKkmKiIhQaGiopX3ixIm6cOGCPv74Y6v5hgwZosmTJ2v8+PHq3LmzBgwYoHXr1mnVqlVq1KiRQ8/VU5EMu2Pjxo3ODiHPmEtbUwsJCcnReGn1O3PmTJrHBgcH27RFRUXlaF7pf+WpZl5eXipZsmSOxwMAAADyk8jISBkMBpUvX97ZoQAAALi1kBCjvvkmSd27eys+PvPj/fykpUslV89r+Pj4aObMmerYsaO2bNmiBx98UB988IEefPBBS9Lr+PHjWrNmjebOnavHHntMQ4cOzbP4ateurZUrV+qnn37S66+/rnLlyjlknq5du2r58uU6efKkRowYoYkTJ1olw/bu3asBAwZo//79qlatmmbMmGHVv379+vL19bWqrjt9+rQ++eQTDRw40Gb1NX9/f40ZM0aDBg1Su3bttH79ei1YsEAdOnRwyPnlByyTmA/dfffdabbntKIqrX6XL19O89gqVarYtJ08eTJH8yYlJen06dNWbeXLl8/Tbx4AAAAgf4qMjMzVl7pcQmSkZr79tsLCwpwdCQAAgEd49FFp8+bkpQ8z0rx58nGPPpo3ceVW27ZttXTpUgUFBemPP/7QQw89pICAAJUsWVJ+fn6655579OKLLyoiIiLPV1/r06eP/Pz8dOzYMVWsWFF33XWXKleurMqVK9v13+tdu3bVo3desM8++0xFixbVvn37JElvvPGGQkJCFBERoUaNGmn9+vUqVaqUVf+CBQsqJCREO3futLSNHj1aPj4+GjduXJpzPv/88woODtb69ev1wQcfqHfv3nY7n/yIZFg+VKFCBQUGBtq0m9c1zS4/Pz+btvh0vv5QvXp1m7Zjx47laN5Tp07p9u3bVm01atTI0VgAAMD97d69W4MHD1ZoaKjq1q2r0NBQDR482PJtPcBuPCSJFPP22yr/1VeaPXu2+yf2AAAAXESjRtLWrdKuXdLgwVJoqFSnTvL/Dh6c3L51q+tXhKXWuXNnHTt2TGPHjlWTJk0UGBioq1evytfXV/Xq1VP//v21fPlyjRw5Mk/jqlatmjZs2KDHH39cpUqV0uXLl3Xy5EmdPHlSiYk528ctLV5eXlq2bJk+/PBDVa9eXUlJSZZ9ynx8fHT//ffriy++0LZt29JddaFZs2Y6cuSIYmJitHv3bn355ZcaPXq0TeLMbPr06Tp//ryk5H3EkDssk5gPeXl5qUGDBvrtt9+s2q9du5aj8dJajzW9KrOGDRvatG3bti1H827dutWmrYEr7zYJAAAcIiIiQi+//LK2b99u89y2bds0Y8YMNW/eXFOnTmVtddiFOYn0iY+PRo0a5Z5LDEZGyu+rr/SfpCR9kJCgsLAwTZs2zdlR5RjLPQIAAFfToEHyjycpXbq0xo0bl24lkyQZjUbdunXL8nj9+vXy9vbOcNwTJ05kOrc58ZSWZs2aaeXKlRn2b9WqVYZjZEWBAgX05ptv6s0339TMmTP14osvqnbt2tq/f3+W+jdt2lRJSUnavXu3xo4dq0qVKmn48OFpHrtkyRKNGDFCr7zyijZv3qz3339f/fr1U6FChXJ1DvkZlWH5VKtWrWza/v333xyNldZ/rNLLZteoUcPmuSNHjujChQvZnnfLli02bQ8++GC2xwEAAO5r1apVatGiRZqJsJS2bdumFi1aaNWqVXkUGTxWiiRSqTtJJHcU8/bbKpCUJF9JoyS3rw4LCwtz29cCAAAA7mfPnj2SpJCQkCz3adasmSRpzJgx2rRpkyZMmJDmam0bN25U79691bVrV33yySd69913de7cOU2ZMsU+wedTJMPyqU6dOtm0pVVplRVp9UvvPwIGg0Ht27e3af/++++zNWdiYqJWrFhh1ebn56eWLVtmaxwAAOC+IiIi1KVLl3SXZ04tPj5eXbp0sdqwGMguj0gi3UnomQ2Q3DqxFxkZqTlz5rjnawEAAAC3lJNkWOXKlVW6dGn99ttvatq0qbp162ZzzP79+9W5c2c1a9ZMCxYskMFgUMeOHRUaGqqJEyfqypUrdjuH/IZkWD7VpEkTVatWzaotIiJChw4dytY4ly5d0s8//2zT3rZt23T7dO/e3aZt1qxZ2Zr3hx9+0NmzZ63annjiCcpEAQDIR15++eUsJ8LM4uPjNXToUAdFBI/nIUkkc0LPzK0Te0quCktISFCCG74WAAAAcD+JiYmWpRGzkwyTpMaNG0uSPv30UxkMBqvnIiMj9fDDD6t8+fJasWKFVdXYe++9p6tXr+qjjz7KZfT5F8mwfOzll1+2aRs7dmy2xvjggw+s1oCVkhNtFSpUSLdPx44dVblyZau2ffv26dtvv83SnAkJCWnG+eKLL2apPwAAcH+7du3KdGnE9Gzbtk27d++2c0TIDzwiiZQqoWfmrok9c1WYmVu9FgAAAHBLhw8ftnwxs379+lnuFxsbqz/++ENdunRRaGiozfMVKlRQVFSUDhw4oKJFi1o916ZNG5lMJrf797or8XF2AK7it99+c9jY3t7eKly4sIoUKaLixYsrMDDQYXNlx4ABA/Txxx8rMjLS0rZ06VLNmDEjS4mllStXprlO6ZgxYzLs53Nno/FBgwZZtQ8ZMkTNmjVTpUqVMuw/evRom00JW7RowRKJAADkI3Pnzs11/waetps1HCuDJFLYnSTStGnT8j6ubIp5+20FpUjomZkTe6/Onq1Ro0apfPnyeR5bTpirwswS3Oi1AAAAgHuqXbu2TCZTtvuNGzdOsbGxVHc5CcmwO1q1amVTlugoFSpUUJMmTfTggw+qV69eNlnevOLn56dp06bpiSeesGofPHiwoqKi9Pbbb8vf39+m3+3btzV16lSNGjXK5o++ffv2ae5Hllr//v31xRdfWH0r+9KlS2revLm+//57NW/e3KbPjRs39Oqrr2rmzJlW7T4+Pvrss88ynRMAAHiOvXv3OrU/8h+PSCKlk9Azc7fEXuqqMLPZ7vBaAAAAIF+Ijo7W6tWrtXPnTk2ePFkff/yxqlSp4uyw8iWWSUzFZDI5/OfUqVP6/vvvNWzYMJUvX16DBg1SdHS0U8738ccf14gRI2zaP/zwQ1WpUkUvvPCCZs2apaVLl2r27NkaNmyYqlatqpEjRyoxMdGqT+XKlbVo0aIszevt7a3FixercOHCVu1nz55VaGio2rZtq48++kiLFy/WzJkzNWzYMFWoUMEmESYlfxu0Xr162ThrAADg7mJjY3PVPyYmxk6RIF/IQhLJHZYYTL3MY2rutuyjuSqsvKRyKdrZOwwAAACuYu3aterZs6cWL16sMWPG6NVXX3V2SPkWlWGp5FV1mLmi6saNG5o9e7ZWrVqlr776Sq1atcqT+VP65JNPdO3aNc2bN8+q/fz58/riiy+yNEb16tX1ww8/qESJElme995779WqVav0yCOP2HygtX79eq1fvz7TMV555RX+AwIAQD6U22Wng4KC7BQJ8oP0qsLM3KI6LJOEnpm7VIelrAobJckkKeWOyFSHAQAAwBV069ZN3bp1c3YYEJVhVtKq4srs+ZwebzAYLD8mk0lnzpzRww8/rD/++CMvT1mS5OXlpblz52rKlCkKCAjIVl+DwaBu3brpjz/+ULVq1bI9d4sWLbRt2zbVqlUrW/0CAgI0Y8YM/d///V+25wQAAO4vO5sUO6I/cu7ixYu6dOmSs8PIumwkkVy5OiyzqjAzd6kOS1kV1l/J15/qMAAAAADpIRl2x4YNGyw/EyZMkL+/v6VKzGQyqUiRInr66af1/vvv6+uvv9aqVau0du1aff/99/riiy80ZMgQNWrUyCopZjAYFBoaql9++UVr167VkiVLNHXqVPXs2VOlSpWyOs5gMOjWrVt66qmndPHiRadcg6FDh+rIkSMaOXKkgoODMzy2WLFi6tGjh/bs2aNvvvlGRYoUyfG8tWvX1t69e/XFF19kutxhiRIlNGzYMB0+fFiDBg3K8ZwAAMC99e/fP1f9n3/+eTtFguxatmyZli1b5uwwsswjkkhZTOiZuXpiL3VVmK/+d/1TcsnXAgAAAIBTsEziHS1btpQkzZo1S++8846MRqNMJpMqVqyoDz/8UE8//bR8fX0zHefo0aOaOHGiZcnBbdu26e2339YPP/xgSTANGTJECQkJCg8P1xtvvKHr169b+p87d04ff/yxJk6c6ICzzFzZsmUt8x84cED79+/X2bNndfPmTRUpUkQlS5ZUtWrV1KBBA3l52S+X6uPjowEDBmjAgAE6deqUdu3apRMnTiguLk4FChRQcHCwateubfd5AQCAe2rQoIGaNWum7du3Z7tv8+bN1aBBAwdEhcxERUVp7dq1kqSnnnrKydFkQQ6SSK64xGBmyzym5urLPqauCjMbIClM0uk7jxNc8LUAAAAA4Bwkw1JYuHChBg8ebFnG8KmnntLChQtVqFChLI9RrVo1zZ49Wz169NCTTz6p2NhYRUREqEOHDtqyZYtlf4uCBQtq4MCBatOmjVq3bq0zZ85YlkycNWuW3nrrrVxVW+WWwWBQnTp1VKdOnTyfu2LFiqpYsWKezwsAANzLZ599phYtWig+Pj7Lffz8/DR16lQHRoU0RUZKBoMmTZqkxMRESckVYl26dHFyYBnziCRSNhN6Zq6a2EurKszMfP3ZOwwAAABAapTY3HHy5Em99NJLlkTYQw89pCVLlmQrEZZSmzZt9MMPP1iWQNy/f7/eeOMNm+OqVq2qJUuWWJZklKTY2FitWbMmx+cCAACQHzRq1EhLly6Vn59flo738/PT0qVL1ahRIwdHBhthYYp5+20tXLjQ0rRmzRqdPn06g05OloskkistMZjVZR5Tc9VlH9OrCjNj7zAAAAAAaSEZdseHH36ouLg4SclVW1988UWul+N78MEH9fzzz1v2EZs9e7ZOnjxpc1zz5s312GOPWfYQk6TffvstV3MDAADkB48++qg2b96s5s2bZ3hc8+bNtXnzZj366KN5FBksIiOlOXPk9+WXKpWQYGlOTEzUpEmTnBhYxjwiiZTDhJ6ZqyX2MqoKM2PvMAAAAABpIRmm5G8LLl682FLF1bZtW1WqVMkuYw8YMEBS8rKDRqNRX375ZZrHmTdxN1eIRURE2GV+AADgGiIjI/kw1kEaNWqkrVu3ateuXRo8eLBCQ0NVp04dhYaGavDgwdq1a5e2bt3qdhVhHnPPhIVJCQkqkJRkk6RYsGCBa56jhySRcprQM3OpxJ4yrwozozoMAACklJSLfw8BSFtaf1cpV79zRSTDJP3xxx+KjY21PG7durXdxm7UqJFlnzBJ2rBhQ5rH3X///ZabxWQy6cKFC3aLAQAAOF9YWBgfxjpYgwYNNH36dP3+++/6888/9fvvv2v69Olq0KCBs0PLEY+4Z+5UhZm5S5LCI5JIkZEK/OabXA/zUsGCOrNjh0qWLGmHoHIuK1VhZlSHAQCQf5m3wEkp5ee+AOwj9d+VwWDI9Up7jubj7ABcweHDhyX97z+WZcuWtev4ZcqU0bFjx2QymSxzpVasWDGVLFlSly5dkiRFR0fbNQY4l3kJTiD1vcC9kT2efv3c6fxcLVZnxZPVeaOioiwf4r700ksqV65cmsfldp6ccMTYrnZ/uKPc3jOuwu/dd1UwxdKI5iTFyymOmT17tkudoyEqym5JpMfWr1fBggV1/fp1O0SWzb8tX18ZDh2yy7wFAgOVkJCghBSvpSP8P3v3Hh9Fdf9//L0khA0hAYHgjYuUm4hgCOGSSASr1BttvZQWrRUoYDUKbb1ia621/dkgWixC0W+gApZWpWJtsVJAEQMJQhIjERUFuSTeiHILIWEJ2d8fm12zue5ldmd283o+HvsIM5k585nhJLPZz3zOaen8HnnkEZ+qwtxmSsqW5J6VzuFw6JFHHtHjjz9uULTW+l1n9fug1Y9jdPtW6huwHvpH4KL92kXa+Vkp3obHjomJUU1NjWcUsC+//FK1tbVKSEgw/MP62tpanT592rPscDhCkhAI5XGMbjtc1wTmqK2tVWVlpcrLyz3TQzmdTnXs2FEVFRWt7l9VVRWGKJtmc9afqKqNmjt3rh544AFJrgzm8uXLdfPNNxvWfv/+/bV37145nU516NCh2f/w888/Xx9//LGcTqdiYmJ06tQpw2KAsZYtW6Zly5Y1Wl9ZWek1xOWCBQvUu3fvMEYGALCiZ555Rq+99pok6eqrr9att95qckSwumjoM/bycl1+++2KqanxWn9SUj99k6SQrHWO7RwOxRr0B1pNfLxq4+IMaastKy8v1+23366amhotlHSHj/stlHfiNTY2Vk8//bTpVW4AACC0OnTooM6dO0uSOnbsqJiYGJMjAqLT6dOndeLECUnS0aNHdfLkyVb3OXDggGbPnu1Zfu+99zRkyJCQxVgflWGS2rdv77X86aefNrOl/5xOp7744otmj1VfbOw3/x12u92wGGC8ffv2adOmTWaHAQCIAOXl5Vq/fr1ned26dbr++ust92Hsnj2dtX59H+3d21nV1TGy20+rb9+jmjBhv/r1O2p2eG1KpPSZ1gxcvbpRIkxqujrMSudYGxcnBwksS+ncubOWLl2qjl9/revuu09qol815fbYWJ01b55OdO3qWRcfHx+qMP1WXl4um81miX4PAEA0OXnypBwOh+Li4nTixAnFxcUpNjZW7dq1s/ycRoDVOZ1O1dbWqqamxjNyhMPh8CkRZjaSYXINYyh9M8HbunXrdP/99xvS9pYtW3TixAlP2+5jNeXo0W8+aEpISDDk+AiN8847T+PGjWu0vmFlGAAAq1evVk29D25ramq0evVqy1TB7N7dRTk5Q7VrV9dG39u1q6vWru2rQYMOaebMEvXvfyT8AbZBVu8zvrCXl6t3vYReQw2HsIvEc0T4xMXFKS4uTsOef77JBGtzYmpqlLp+vUos2q9Wr14tm81GvwcAIASOHDmiLl26KC4uLizDPQNtlcPh0JEjR8wOwycMkyhp27ZtGjNmjGw2m5xOp2JjY/XOO+8YUp43efJkvfjii55k2He+8x3PkDf11dTUKCEhQTU1NXI6nUpJSVFRUVHQx0d47dy5UxdeeKFn2T1M4qhRo0hwQpIrYbpt2zbPMn3DP9F+/SLp/KwWq1nxtHbcsrIyDR8+vNEfXnFxcSouLvZ5jqRQnd/atbGaMiVe1dWtPx1ptzu1fHmVrryy9Q+irdY/IolRfcZs9rvvVlzdnGfNaTiEXaSdoxmi/WerpfOzlZWp0/Dhsvn5QZYzLk7Hi4vlDEG/Cub/w/2zLsmQfm/V+2CkHMfo9qP9ZxXBoX8ELtqvXaSdn5XibS6W2tpaVVVVeV6h+BjcPX+SWyjmJQv1cYxuO1zXBOax2WyKj4/3vPz5/y0qKtKll17qWWaYxDAbOXKkzjrrLH355ZeSXImpGTNmaOPGjUENV/jyyy97EmFOp1M2m03f+973mtz2gw8+0KlTpzwTO/bt2zfg48J6EhISlJSUZHYYsCD6RnCi/fpF0vlZLVaz4ml43EWLFjX5BKLD4dCiRYu0cOFCQ44TiIICacoUqbrat+2rq22aMqWjcnOltDT/jmW1/mFloeozYVVaKq1Y0epmDavDIuocLSLaf7a8zm/RIimAJ7ptDocSFy2SwtCv/Pn/qP+zHop+b5X7YKQex+j2o/1nFcGhfwQu2q9dpJ2fleKtH0uXLl0kfTO0m9EJsYqKCuXm5nqWzz//fCUmJhp6jFAfx+i2w3VNYA6bzRbUkKNmDltOSlau/8Af/vCHnoSV5KoWu+qqq1ReXh5Qm3//+9910003eXWKDh066IYbbmhy+/q/ICTpoosuCui4AADAGkpLS7WkhcqYnJwclZWVhTEib7Nm+Z4Ic6uulurNcwuD1e8zPSU1rBMxu8/4LDvbp6SFe+6w+iLmHBFepaVSK5WGLcrJkSzUr0pLS7U2J8fzM06/BwAg9Gw2m2JiYhQbG2voKyYmRk6n0/MKxTFCfRyj2w7XNeFlzismJiZi594jGVbnoYceUrdu3STJU8m1adMmDRo0SPPmzfNUjbVm48aNuuaaa/STn/zEM2mcO8k2Z84c9ejRo8n9XnnlFc+2kpSRkRHsKQEAABNlZ2e3OC69w+FQdnZ2GCP6RmGhtHVrYPvm50uM5Bwa9fvMHDVOFJnZZ3zmZ9JipryTfhFxjgg/HxOszXI4XG1YRHZ2tu46dcrzM06/BwAAAEKPZFidrl27eg1N4c5uHjlyRHPmzFGvXr00evRo3X777Zo7d66efvpp/fWvf9Wf//xnPfTQQ7ruuut07rnn6vLLL9fatWu9qswkKSUlRQ888ECTxy4tLdUbb7zh2T4hIUGZmZkhPFsAABBKrVWFuZlVDbB0qbn7o7GGVWEz1DhRJEVABYmfSQuqw9CqYKvC3CxSHeauCmv4M06/BwAAAEKLOcPq+dGPfqQjR44oKytL0jcJMafTqZqaGm3fvl0FBQXN7l9/zNn6+w4bNkzr1q1T+/btm9zv//7v/xQb+81/xXe/+1116NAh6PMBAADmaK0qzM1dDRDuOZKKi83dH401rApzvxOcI2lWve3M6jM+CTBp0dTcYZY9R4RfcrJxSSwLzFXhrgpr+DNOvwcAAABCi8qwBn72s5/pn//8p5KTkz3JLZvN5nnVH++04aup7X74wx9q48aNniEYm/L73/9eVVVVntfKlSvDdboAAMBgvlaFuZlRDXD8eHD7V1QYE0eolJaWRlSFRVNVYW4RVR0W4FB2VIehRXa7KyFmxMtuN/VU6leFuVEdBgAAAIQHybAmXHfdddq5c6d+9rOfqWPHjp7EluSdGGv4qp8YGz58uFavXq3nn39eZ5xxhslnBAAAwsXXqjA3M+aK6dQpuP0tUFzRouzs7Iiaf6e5qjCp6USRJecXCnIouzvi4vRVcbEOHjyogwcPqqysTN27dzcwQMB8DavCJO+fcUv+bAMAAABRgmRYM7p166bFixfrs88+01/+8hf94Ac/0LnnnttsVVhcXJxGjx6tX/ziF8rPz1dhYaGuvfZas08DAACEUVlZmV9VYW7hrgZISTF3/1ByV1lFSoVFS1VhbhFRHRZgVZibzeFQt5wcJScne152k6t4ACM1VRXmRnUYAAAAEHokw1qRmJio2267TS+++KIOHDigw4cPa/fu3dq+fbs2b96skpISlZWVqaKiQvn5+frTn/6k0aNHmx02AAAwwfz58/2qCnMLdzXAjKY+jfXD9OnGxBEK7iqrSKmwaKkqzM3y1WFBVoV55OQYNzcUYDFNVYW5UR0GAAAAhB7JMD917txZ3/rWtzRixAhlZGRoyJAhOueccxQbG2t2aAAAwETl5eVasWJFwPuHsxogNVUaMyawfdPTXftbUcP52qxeYeFLVZibpavDkpNdSayDB1t9VezZo9eWL/e8Kvbs+eb7ZWUSQyMiCrVUFeZGdRgAAAAQWiTDAAAADLB69eqAqsLcwl0N8NRTkr+j0Nnt0oIFoYnHCA3na7N6hYUvVWFulq4Os9tdCTEfXs7u3eXo3Nnzcnbv7r0NQyMiCrVUFeZGdRgAAAAQWiTDAAAAglReXq7169cH3U44qwHS0qRVqyS73enT9na7a/u0tBAHFqCGVWFuVq2w8KcqzM3S1WEAmuRLVZgb1WEAAABA6JAMAwAACFLnzp21dOlS7dmzRwcPHgz4VVZWpu5hHCZu4kTptdcqNWjQoRa3S0+XcnNd21tVw6owN6tWWCQnJ6usrEwHDx7UR9OmtVgx4tZB0sc//ampfQaAf3ypCnOjOgwAAAAIHSa68tGpU6f0wQcf6KuvvtLXX3+tqqoqSdItt9xicmQAAMBscXFxiouLU/fu3ZWUlGR2OH5JTa3V3Lm52rOnszZs6KNDh3rpxIlYJSZKKSnS9OnWnSPMrbmqMLecnBzNmTNHPXv2DGNULbPb7bLb7VJpqbRypc/7xf/tb4r/3e8kC50LgKa5q8L+5Mc+MyVlS/pU1vzdBQAAAEQqkmEtqK6u1pIlS/Tyyy9r69atqq6ubrRNS8mw119/XUePHvUsDxs2TP379w9JrAAAAMHo1++o+vXboUsv7RZxCb3mqsLc3BUWCxcuDGNUPsrOlvyZa87hcO1jxXMB4MWfqjA3d3XYLFn8dxcAAAAQYRgmsRmLFy9Wnz599POf/1xvvvmmqqqq5HQ6vV6tefPNNzVp0iTP65577glD5AAAAG1Ha1Vhbpacf6e0VPIh9kZyciSrnQsAL/7MFdYQc4cBAAAAxiMZ1kBVVZVuuukm3XnnnSovL/ckvWw2m9fLF7Nnz1aHDq7nAJ1Op1577TV99dVXIYsdAICAlJbywToiVmtVYW6WnH/H36owN3d1GADLSk5O1ns33+xXVZhb/fkBmRcQAAAAMAbJsHqcTqduvPFGvfDCC3I6nZ7El78VYW7Jycm64YYbPPvU1NToX//6V4iiBwAgQNnZfLCOiORrVZibpSosAq0Kc6M6DLA0e3m54v2YD7Ch+L/9TcknTyo5Odk1vyAAAACAoJAMq+fhhx/Wv//9b0nyJMHat2+v6dOna/Xq1XrnnXc0ePBgv9qcNGmSpz1JWr9+vbFBAwAQDPcH8nywjgjka1WYm6WqwwKtCnOjOgywNn7GAQAAAEshGVbn008/1WOPPeZJWjmdTg0bNkwffPCBcnJydO211+qiiy5SXFycX+1eccUVio+P97S5ceNGw2MHACBg7g/r+NANEcbfqjA3S1SHBVsV5kYSG7AmfsYBAAAAy4k1OwCryM7O1smTJz0VYf3791dubq4SExODardDhw5KSUlRfn6+JOnrr7/W559/rrPPPtuIsAEACFzDD+tycqQ5c6SePc2LCfCRv1Vhbu7qsIULF4YgKh8lJxv3AXeQ71UBhEAb+BkvLS2VzWZTUlKS2aEAAAAAPiEZVufll1/2JMJsNpuWLFkSdCLMbcSIEZ5kmCR9+OGHJMMAAOZrOISTuzrMzCQB4INAq8LccnJyNGfOHPU0K/Frt7teAKJTNP+Ml5ZKNpuys7Nls9n06KOPmh0RAAAA4BOGSZT0wQcf6LPPPvMsp6am6pJLLjGs/W9961teywcOHDCsbQAAAtLcEE4MyYQIEGhVmJul5g4DgEiSna2KBx/UkiVLlJOTo08//dTsiAAAAACfUBkm6f333/f822azacKECYa236VLF6/lY8eOGdo+rK+ystLsEGARDfsCfcM/0X79wnl+9kceUVxTyQSHQ45HHlH144+3uL/V/i/Miidcxw3lcULRdijjLSsrC6oqzC0nJ0d33HGHzj33XAOigq+s9rsj0kT79Yu087NSvOGIxVZWpk5LlsheU6Pk2lp9Kumxxx7TtddeG9LjNtWu0ccxun0r9Q1YD/0jcNF+7SLt/KwUr5mx8Ddh6NtDdKmqqjLt2Dan0+k07egW8fTTTysrK0uSPEMkTps2rclthw8frh07dniGUzx9+nSr7b/00kuaNGmSbDabJOkPf/iDHnjgAeNOAGG3bNkyLVu2rNH6yspKFRQUeJYXLFig3r17hzEyAGidvbxcl99+u2Jqapr8/unYWG14+mlVd+8e5siA1jkcjhbfPHf8+mvJZtOJrl1bbSs+Pl5xcXFGhgcAUWvYM8+o72uvSZIWSpolKTY2Vk8//bS6854BAAAAPjhw4IBmz57tWX7vvfc0ZMiQsBybyjBJhw8f9lru3Lmzoe0fP35ckjwJNHu0jh/fhuzbt0+bNm0yOwwACMjA1aubTYRJUkxNjQasXq2SW28NY1SAb+Li4lpMYA17/nk5bTb6LwAYyF5ert7r13uWZ0rKlvRpTY1Wr16tW/mdCwAAAIsjGSYpKSnJa7miosLQ9svLy72Wu3XrZmj7CL/zzjtP48aNa7S+YWUYAFhNww+zmtNn3Tp9fP31VIchotTv3/RfADBOwwdpOkiaI1d12Lp163T99ddTHQYAAABLIxkmqUePHpLkGcbw888/N7T9wsJCr2X+SIh8U6dO1dSpUxut37lzpy688MJG60eNGqWEhIQwRAarq6ys1LZt2zzL9A3/RPv1C8f52e++u8WqMLeYmhpd+vbbzc4dZrX/C7PiCddxQ3mcULRt1v9H/f7dUv+Feaz2uyPSRPv1i7Tzs1K8oYzFVlamTq+/3mh9U9VhkXgfDEX7VuobsB76R+Ci/dpF2vlZKV4zY+FvwtC3h+hSVFRk2rFJhkmNJk7fvn27YW2fPn1ab775pmw2m9zTsw0bNsyw9hEZEhISGlUgAhJ9I1jRfv0MP7/SUmnFCp83j1u+XHEPPST17Nnqtlb7vzArnnAdN5THCUXbYbkuDfq3P/0X5rHa745IE+3XL9LOz0rxGhrLokWSw9FodVPVYdFwHwxF+1bqG7Ae+kfgov3aRdr5WSleM2OJhnsh90GEUnx8vGnHbmfakS1k5MiRnuy00+nU+vXrPfN8BeuFF17Ql19+6Vnu27evevKhDADADNnZTX6Y1SyHw7UPEAka9m/6LwAEr7RUWrKk2W/PlHSupJq66jAAAADAqkiGSWrfvr3Gjx/vqdyqrKzU4sWLg2732LFj+u1vf+upCrPZbLr88suDbhcAAL+18mFWs3JypLIy4+MBjNRc/6b/AkBwWnmQxl0dJrmqwz799NOwhAUAAAD4i2RYnSlTpkiSJ3H1u9/9Tu+//37A7Z06dUo333yz9uzZ47X+zjvvDCpOAAAC4m9VmBvVNYgEzfVv+i8ABM7HB2nqV4fNnz8/5GEBAAAAgSAZVucHP/iBhg8fLsmVEDtx4oQuu+yygOYP27Nnjy655BK9+uqrXlVhEydO1IUXXmh06AAAtCzQqjA3qmtgZa31b/ovAATGxwdp6leHLV++XGX8zgUAAIAFkQyr58knn1RMTIwkV0Lsyy+/VEZGhmbMmKGtW7eqpqam2X2//PJLrVq1SjfeeKMGDx6sbdu2eYZdlKTExEQ98cQTIT8HAAAaCbQqzI3qGlhZa/2b/gsA/vPzQRp3dZjD4VA2v3MBAABgQSTD6snMzNTChQs9SSybzabTp0/r2Wef1cUXX6xOnTrpgw8+8EpynXPOOYqPj9c555yjyZMn68UXX1RNTY2nGsz99dlnn1X//v3NOjUAQFsVbFWYG9U1sCJf+zf9FwD84+eDNPWrw3JycqgOAwAAgOXEmh2A1dx66606dOiQHnzwQa+EluR6yq0+p9OpL774olEbNpvN8/3Y2FgtWLBA1113XeiDBwCgoeRk45IAiYnGtAMYxdcPa93VYQsXhj4mAIh0AT5IM1NStqRP66rDFvI7FwAAABZCZVgT5syZo//973/q0aOHJyHmz0tyJcK6d++utWvX6rbbbjP5jAAAbZbd7kqIGfGy280+G+Ab/n5YS3UYAPgmwOGVqQ4DAACAlZEMa8Zll12mjz/+WHPnztXZZ58tp9PpeTWl/veTkpL08MMPa8+ePfr2t78d5sgBAADaAH8/rGXuMABoXZDDKzN3GAAAAKyKZFgLOnXqpHvvvVd79+7Vxo0b9fDDD2vChAk6//zzlZycrNjYWCUmJqpv375KT0/XL37xC7366qv69NNP9dBDDymR4aQAAACMF+iHtVSHAUDLAqwKc6M6DAAAAFbFnGE+aN++vcaNG6dx48aZHQoAAAAC/bCWucMAoHlBVoW53REXpxu3bVPtOefwgCgAAAAsg2QYAAAAIkewH9bm5Ehz5kg9exoXEwBEg+Rkv6tnKyoqtHnzZs/y2LFjlZiYqG6Jicw1CgAAAEshGQYAAIDIEeQQXlSHAUAz7Ha/E1jODh3k6Nz5m+Xu3aWkJKMjAwAAAILGnGEAAACIDAYN4cXcYQAAAAAAtC1UhgEAACAyBDCEV7OYxwYAAAAAgDaDZBgAAAAiQwBDeAEAAAAAADBMIgAAAAAAAAAAAKJWVFeGffvb3zY7hEZsNptef/11s8MAAAAAAAAAAABoE6I6Gfbmm2/KZrOZHYaH0+m0VDwAAESaoqIiLVmyRMXFxTp+/Lg6deqklJQUTZ482ezQAACA1ZSWSjab1LOn2ZEAAADAZFGdDAuG0+ls8fv1k1r+bAsAAPxXUFCgWbNmaevWrY2+l5+fr8WLF2vQoEGaOXOm+vfvb0KEAADAcrKzXcmwhQvNjgQAAAAmaxNzhjmdTr9fkiuJ1dyr/rYtbVf/+AAAwH9r1qxRZmZmk4mw+nbt2qVf/epX2r59e5giAwAAllVaKi1ZImdOjj7nvQEAAECbF9WVYZdccknAVVnbtm1TdXW1Z9mdzIqJiVHv3r3VuXNnJSQkqLKyUkePHtWBAwd0+vRpSfJKgnXs2FEjR44M8kwAAGibCgoKNGnSJK97ckscDofmzZunyy+/XOPHjw9tcAAAwLqysyWHQzZJH02frrN37DA7IgAAAJgoqpNhb775pt/7HDlyRLfccouqqqo8FWBnnXWWbr75Zl1//fVKSUmR3W5vtF91dbWKi4v10ksvaeXKlfriiy9ks9lUVVWlpKQkrVixQp07dzbgrBCJKisrzQ4BFtGwL9A3/BPt1y+Szi9csWZlZfmcCHNzOBy655579MYbb4QkpvrCdR1CeZxQtB1JfRnhRd8ITrRfv0g7PyvFa1YsVr0P2srK1GnJErkfjR1TUqKPN27UmSNGGNJ+a6zUN2A99I/ARfu1i7Tzs1K8ZsZi1XuhmW1bqW/Aeqqqqkw7ts3J+H0ehw4d0iWXXKIPPvhAktSuXTvdd999evDBBxUfH+9zO9XV1frDH/6gxx57zFMtNnjwYL311lvq2rVrSGJHeC1btkzLli1rtL6yslIFBQWe5QULFqh3795hjAwAosfu3bt1zz33BLz/E088oX79+hkYEQAAiATDnnlGfV97zWvdf/r0Ue2f/2xSRAAAAOFlLy+XbDZVd+9udiheDhw4oNmzZ3uW33vvPQ0ZMiQsx47qyjB/3XDDDXr//fclSXFxcVq5cqVuuOEGv9ux2+36wx/+oBEjRujGG2/UqVOn9P777+v6668PqFoN1rNv3z5t2rTJ7DAAIKpt2LAh6P1JhgEA0LbYy8vVe/36Ruu/s3+/Vn/0kToOHGhCVAAAAOE1cPVqOW02ldx6q9mhWEY7swOwihUrVmjTpk2y2Wyy2Wx66KGHAkqE1Xfdddfpt7/9rWe+sdzc3CariRB5zjvvPI0bN67RKy0tzezQACBq7N2719T9AQBA5Bm4erViamoare8gqdOiReEPCAAAIADl5eX66quvAtrX/XBQn3XrZA+wjWjEMIl1LrroIpWUlEiSzjnnHB04cEDt2gWfKzx9+rT69Omjzz//XE6nU0OGDPEcB9Fn586duvDCCz3L7mESR40apYSEBBMjg1VUVlZq27ZtnmX6hn+i/fpF0vmFI9aMjAzt3Lkz4P2HDBmivLw8AyNqLFz/Z6E8TijajqS+jPCibwQn2q9fpJ2fleI1Kxar3QdtZWXqNHy4bA5Hk+2clHTgjTcazR1m9HlYqW/AeugfgYv2axdp52eleM2MxWr3Qiu0baW+Ecnuvvtu2Ww2Pf74437va7/7bsUtWSJJcsycqeoA2giVoqIiXXrppZ5lhkkMs3379qmkpEQ2m2t63euvv96QRJgkxcTE6IYbbtBTTz0lSXr//fe1d+9e9e3b15D2ERkSEhKUlJRkdhiwIPpGcKL9+kXS+YUi1mDb69y5c9ivX7j+z0J5nFC0HUl9GeFF3whOtF+/SDs/K8VrViym3wcXLZKaSYRJruqwz37+cw3YsSOw9gNkpb4B66F/BC7ar12knZ+V4jUzFtPvhRZs20p9I1KUlpZqxYoVkqSHHnpIPXv29GdnqW5fSYpbvlxxDz0k+dNGCMXHx5t2bIZJlFRYWChJnuEMjc5ENmzPfTwAANC8lJQUU/cHAAARpLRUqnsCuiVjSkr0+fbtYQgIAAC0KaWlUlmZIU1lZ2fL4XDI4XAoOzvb3529Hw5yOFzrQDJMkg4cOOC13K1bN0PbP+OMMyTJU3lWWlpqaPsAAESjGTNmBLX/9OnTDYoEAABYXsMPfprRQdJHvEcAAABGy842JOlUWlqqJfUe8MnJyVGZr0m25h4OyskxLFEXyUiGSaqqqvJaPnjwoKHtuye6c1eeVVdXG9o+AADRKDU1VWPGjAlo31GjRik1NdXgiAAAgCX5WBXmRnUYAAAwlPu9iAFJJ3dVmJtf1WHNPRxEdZgkkmGSpOTkZEnfVG69++67hrbfsL3u3bsb2j4AANHqqaeekt1u92ufuLg4zZ07N0QRAQAAy/GxKsyN6jAAAGAo93uRIJNODavC3HyqDmvt4SCqw0iGSdK5557r+bfT6dTLL7+skydPGtL2yZMntXr1ak+iTZLOOeccQ9oGACDapaWladWqVT4nxOLi4nTvvfdSFQYAQFvhZ1WYm1nVYaWlpb4PdQQAAKyv4XuRIJJODavC3HyqDmvt4SCqw0iGSdKYMWMUGxvrWf7666/129/+1pC2H374Yc8wiZIUGxurjIwMQ9oGAKAtmDhxonJzc5Went7idoMGDdKjjz6qkSNHhikyAABgOj+rwtzMqg7Lzs72fagjAABgfQ3fiwSYdGquKsytxeowXx8OauPVYSTDJHXt2lWXXXaZnE6nbDabnE6nHn/8cS1evDiodp955hk99thjnjZtNpsuu+wynXHGGQZFDgBA25CWlqa8vDwVFhYqKytLGRkZGjp0qDIyMpSVlaVNmzZp7ty56t+/v9mhAgCAcAmwKswt3NVh7g+5fBrqCAAAWF9z70UCSDo1VxXm1mJ1mK8PB7Xx6rDY1jdpG+bMmaN169ZJcs0dVltbqzvvvFPbtm3TY4895plXzBdfffWV7rvvPi1fvtyTBHN74IEHDI892uzevVvFxcUqLS1VZWWl4uPjdc4552jYsGEaMmSI2eEBAEyUmpra5BCIx44d08aNG02ICAAAmCbAqjA3d3XY8M2bjYupBfU/5MrOztbChQvDclwAABAizb0XcSedfLzXt1YV5paTk6M5c+aoZ8+e9Xf27+GgnBxpzhypfhttBJVhdcaNG6dp06bJ6XRKkqeaa8WKFTrvvPN04403atWqVfrkk0+a3P+TTz7RqlWrdNNNN6lPnz5eiTD315/+9KfKzMwM52kZxul0avz48bLZbI1e48ePD7r9qqoq/elPf9LAgQM1YMAATZo0SXfddZd+85vf6J577tFNN92kCy+8UL169dLDDz+sI0eOBH1MAAAAAECECrIqzG1MSYm+LCw0IKCWNfyQi+owAAAiXGvvRfyoDmutKsytyeowfx8OasPVYSTD6lm4cKG+/e1vN0qIVVVV6cUXX9TkyZM1YMAAdejQQd27d1efPn3UvXt3dejQQQMGDNDkyZP1wgsvqKqqqlFF2Le//W099dRTZp1a0J566ilt2rQpJG1v2bJFgwcP1t13362PP/64xW3Lysr0u9/9TgMHDtS///3vkMQDAAAAALC45GSprEz3T5umZCngV09J8597LuThNvyQq8WhjgAAgPW1loTyMenka1WYm9cDNYE+HNRG5w4jGVaP3W7XmjVr9N3vftcrIeZOirlfp06d0qFDh1RaWqpDhw7p1KlTXt937yO5Kqq+973v6T//+Y/sdruZpxew3bt3h2x4x9WrV+vSSy/V/v37/dqvvLxc1157rf7yl7+EJC4AAAAAgIXZ7SqtrtaTK1fqKymo19KVK/XVV1+FLNSysjItWbJEPSWdW2891WEAgLaqtLQ0su+BviahfEg6+VoV5ub1QE2gQ0a30eow5gxrwG6365VXXtGyZct099136/Dhw17JLV85nU516dJF8+fP15QpU0IUbejV1tZq2rRpOnHihOFt5+XlafLkyTp16pTX+nbt2mnixIkaO3asevXqpfLycr377rv6xz/+4RWH0+nUnXfeqbPPPlvXXXed4fEBAAAAAKwrOTnZkA/SKioqVBjCoRLnz58vh8OhOZKckmbVrXd/mMXcYQCAtiY7O1s2my1y74G+JqFamTvM36owt5ycHP36llt0djBDRrfBucNIhjVj6tSpuv7667V8+XI988wzev/9933e94ILLtBtt92mW265RUlJSSGMMvSefPJJba43mfDo0aP19ttvB91uZWWlbrzxxkaJsEGDBunll1/W4MGDG+3z2GOPadq0aV7DIzqdTk2bNk3p6ek666yzgo4LAAAAABAZ7Ha7ISOwdOjQQXFxcQZE1Fh5eblWrFihnpJm1K3LlvRp3b9zcnI0Z84c9WxDH0QBANq2+gmgiLwH+js0YQtJJ3+rwtwcDoc+nj5dZwdSFfZNIy0m6qIRybAWJCUladasWZo1a5ZKS0u1detWFRYW6uDBgzpy5IgqKiqUmJioLl26qEePHhoxYoTGjBmjXr16mR26IT766CM9+OCDnuVu3bppwYIFGj16dNBtP/roozpw4IDXuv79+ysvL09du3Ztcp+uXbtq9erV+tGPfqSXXnrJs/7o0aOaM2eOli1bFnRcAAAAAAAYZfXq1Z6qsA516+aI6jAAQNtVPwEUkfdAf4cmbCbpFGhVmOSa83T0e+8FtK+XNlYdRjLMR7169VKvXr00adIks0MJi9raWk2dOlVVVVWedU8++aR69OgRdNtHjhxp9EuuXbt2evbZZ5tNhLnFxMTomWee0ebNm/Xll1961v/tb3/TQw89pG9961tBxwcAAAAAQLDKy8u1fv16r6owSZopqsMAAG1TwwRQxN0D/a0Kc2si6RRoVZgklcuVEJv+059+M39YoBITg9s/grQzOwBY0+OPP678/HzP8jXXXKObb77ZkLZXrlypY8eOea275pprNHbsWJ/279atm+69916vdadPn1ZOTo4h8QEAAAAAEKzVq1erpqbGqypMdf+eU2/ZXR0GAEC0a5gAirh7oL9VYW7u6rA6wVSFSdJJSV9Jmv+3v6ns5EkpOTnwlwFDTkcKkmFo5IMPPtBDDz3kWU5KStLTTz9tWPvPP/98o3W33XabX21MmTJFHTp08Fr3j3/8I6i4AAAAAAAwQnNVYW4zJZ1bbzknJ0dlZWXhCQ4AABM0lwCKmHtgoFVhbjk5Ut15Jicnq6ysTAcPHgzqVVZWpu7duxt0gtGPZBi8nD59WlOmTNHJkyc96x5//HHDSlWPHj3qVXEmSYmJibriiiv8aqd79+4aP36817r9+/frgw8+CDZEAAAAAACC0lxVmBvVYQCAtqa5YQEj5h4YaFWYW73qMLvdruTkZENe9jZU2RUskmHw8thjj2n79u2e5csuu0wzZ840rP38/HydPn3aa92YMWMUExPjd1uZmZmN1uXm5gYcGwAAAAAAwSorK2uxKsyN6jAAQFvR2rCAlr8HBlsV5lavOgzhF2t2ALCOnTt36uGHH/YsJyQkGD4PV2FhYaN16enpAbWVkZHhU/sAAAAAAITL/PnzW6wKc3NXh82qW3Y/Gb9w4cKQxwgAQDg1VxXm1uw9sLRUstkkg0YtC1hysnFJrMREY9qB36K6Mux///uf2SH47PDhwyooKDDt+DU1NZoyZYrXL6VHH31Uffv2NfQ4H374YaN1/fv3D6itfv36NVq3a9eugNoCAAAAACBYpaWlWrFiRatVYW5UhwEAol1ZWVmLVWFuTd4Ds7M9Qwuaym53JcSMeDGsoWmiOhl21VVX6YorrtC7775rdijNOnnypB577DH169dP//3vf02L449//KNXVVVGRobuvPNOw4+zb9++Ruv69OkTUFvnnntuo+EVP/nkk4DaAgBYX1GRlJUlZWRIw4a5vmZludYDAABYgfvJ99aqwtyYOwwAEO3mz5/fYlWYW6N7oHtoQoYWhEGifpjEDRs2aMSIEfre976nX/3qV0pLSzM7JElSZWWlFi9erPnz5+uLL74wNZYdO3bo97//vWfZbrfrr3/9q9q1Mz5X2tS59urVK6C2YmJidPbZZ3s9MfDll18GHFtDBw8eVHl5uV/77N69u8n1lZWVRoSEKNCwL9A3/BPt1y+Szi+csRYVtdN999m1fXvjty35+dLixdKIEXbdeGMX9e9/JOTx1Beu6xDK44Si7Ujqywgv+kZwov36Rdr5WSles2KJhvugke27n3z3tSrMbaakbEmf1i3n5OTojjvu0LnnntvCXuYqKyuTzWazdIxWZaXfHZEm2q9dpJ2fleI1M5ZouBca3Xb9/cvLy7VixQqf961/D7Q/8oji6pJojkceUfXjjwcVF6yhqqrKtGPbnE6n07Sjh1i7du1ks9nkdDpls9kkSZdeeqnuuOMOfe9732tUVRQOu3fv1v/93/9p6dKlOnLkiNyX32az6be//a0eeuihsMZz6tQpjRo1SsXFxZ51f/zjHzVnzpwmt9+3b1+joRPHjRunN99806fjdevWTYcOHfJad/DgQSUnJ/sVt9vgwYMbDb1YUVGhTp06BdRefQ8//LB+97vfBdXGggUL1Lt376BjAYC2avv2MzVv3kg5HK3fs+PiTuvee7dr5EjjHowAAADwlcPhUFVVlUatWKHzX3/dr30/vOwybbvlFs9yfHy84uLijA7RMM8884xsNptuvfVWs0MBAFjYM888o9dee82vfa6++mrNvu46XX777YqpqZEknY6N1Yann1Z19+6hCBNhdODAAc2ePduz/N5772nIkCFhOXZUV4bdeOON+sc//uFJhDmdTm3cuFEbN27UmWeeqSlTpugHP/iBRowYEdI4Dh06pH/9619auXKlJ2lUPwnmdDp19tln69JLLw1pHE35wx/+4JUIGzFihO69996QHa+pJwvi4+MDbq+pfU+cOGFIMgwAYK7du7v4nAiTJIcjRvPmjdSjj272VIgBgNH27Nmj9evXa+/evaqurpbdblffvn01YcKEJue0BdB2xMXFKenoUQ3YtMnvfQds2qT9N94YER/ylZeXa/369ZKk66+/Xt0jIGYAaMvs5eWSzRb2e0z9+4U/1q1bp3lVVZ5EmCTF1NRowOrVKuEhDAQhqpNhK1eu1K233qo77rhD77//vldS7IsvvtBjjz2mxx57TH369NE111yj8ePHa9y4cUG/kautrdX27du1ceNGbdiwQW+99ZZOnz7tObb0TRIsJiZGP//5z/Xwww8rISEhuBP20zvvvKNHH33Us9y+fXv99a9/DWnF3KlTpxqtswcxaWBTyTBfxqAFAFhfTs5QnxNhbg5HjHJyhmru3NwQRQUgUJGeRNq9e7dycnK0a9euRt/btWuX1q5dq0GDBmnmzJnq37+/CRECsIKBq1d7fXjnq0j6kG/16tWqqTvH1atXUx0GABY3cPVqOW22sN9j6t8v/HFWTU2TD5b0WbdOH19/fUQ8OGKmPXs6a/36Ptq7t7Oqq2Nkt59W375HNWHCfvXrd9Ts8EwV1cMkup0+fVpLly7VH/7wB8+41tI3iSlJnnWS1Lt3bw0bNkwXXnih+vTpo3PPPVdnnXWWEhISFB8fr5iYGFVXV6uqqkqHDh1SWVmZysrKtGvXLpWUlOj9999XdXW1p736CTD3ss1m06RJk/T73/9eAwYMCMdl8OJwOJSWlqaSkhLPuoceeqjVYQGDHSYxJiZGtbW1XutqamoCTsCNHTtWW7Zs8Vp34MCBgOchqy/QOcOuvfZaz7J7mMRRo0aFPdkJa6qsrNS2bds8y/QN/0T79Yuk8wt1rO+8007jxwde5bt2bbnS032Ztj444fo/C+VxQtF2JPVlhF5RUZHuu+8+bd++vdltRo0apblz5yo1NTWMkflu7dq1mjJlitd7/ObY7XYtX75cV155peFxGPmzVVxcrBUrVqikpESVlZVKSEjQ0KFDdcsttyglJcWgiP0Tab87rBSvWbFEw33QyPZtZWXqNHy4bAE+oOmMi9Px4mI5LTwPV1lZmYYPH+55CDUuLk7FxcXMHeYHK/3uiDTRfu0i7fysFK+ZsVj9Xui+N0lq9h5j9DlUVlbq1Vdf1e233x5QMmyhpDua+Z5j5kzmDmtGS/Otu40aVaO5c6uVmlrb7DahVlRU5DVCHsMkGiwmJka33nqrpkyZor/85S+aP3++V1JM8k6M7d+/XwcOHNCaNWv8PlbD3KLNZvNKgrVr107XXnutHnroIV100UUBnlHwfve733klwi688EL9+te/Dvlx27dvr5MnT3qtq6qqCnhYw6Ym3DNqXPUePXqoR48ehrSVkJCgpKQkQ9pCdKFvBCfar18knZ/Rsb7wQnD7//OfnXXFFeGfZyNc/2ehPE4o2o6kvgxjrVmzRpMmTWo1ibRt2zZdddVVWrVqlSZOnBim6HxTUFDgcyJMkqqrqzVlyhTl5uYqLS0tpLEF8rNVUFCgWbNmaevWrY2+t23bNi1dulTp6elasGBByONvTaT97rBSvGbFEg33waDaX7RICmKkEpvDocRFi6SFCwNuI9QWLVrkNRqLw+HQokWLtNDCMVudlX53RJpov3aRdn5WijeksZSWSjab1LNnq8cuLS2VzWZTz2a2DYbP51jv3uTrPcaI6xdoVVhPSTNa+H7c8uWKe+ihZq9/W7VmjTRpktTanyzbtsXqqqs6adUqyaw/u4KZMilY7Uw7sgk6dOigX/7yl/rkk0/03HPPacSIEXI6nZ5Krfov93p/X82106lTJ915553atWuXXnrpJVMTYQUFBXrsscc8yzExMfrrX/8alsl5O3bs2GhdUwktXzW1r5WfmgEA+KbedJYBKSlpU29xIKmoSMrKkjIypGHDXF+zslzrYY6CggKfEmFu1dXVmjRpkgoKCkIcmX9mzZrl8zm4VVdXe00KbRVr1qxRZmZmk4mw+vLz85WZmRnQw4FAm1VaKi1ZEnw7OTlSWVnw7YRAaWmpljRxjjk5OSqzaMwAYLjsbNfLp02zle3jtiHR8N4UpntMWVlZQHOFSdIcSS2O8eJw+Hz924qCAt8SYW7V1a7tLfZnV1i0icqwhmJjY/XjH/9YP/7xj7Vz504tW7ZML774okpLSz3b1K8a80f9yrC4uDhddtlluvnmm3XdddcFNTeWUU6ePKmpU6d6ZebvuusujRw5MizH79atmw4fPuy17vjx40pOTg6ovePHj3stx8XFBVxlBgCwjga/3gPYP7D7OCJPQYE0a5bU1Gf7+fnS4sVSerq0YIFkcpFLmxNMEikvLy9EUfmnsLCw1cRRc/Lz81VUVGSZoR8DTU6Go8INiArJyZ4PGCsqKrR582bPt8aOHavExETf2/Jn2zDKzs6Ww+FQT0lOSZ/WrXc4HMrOzqY6DED0q59cmjOnxeqk+g8QzJkzJyTVYa3KzvauWHYnkkL8+7p79+5aunSpZ9nX+2C7Tz9V19GjW6+yzslp9fpHsqKiIi1ZskTFxcU6fvy4OnXqpJSUFM2YMaPJvy1mzfI9EeZWXS3Nni1Z5M+usGnzj00PGTJE8+bN0/79+/Xuu+8qOztbV111lbp16+Z3VVhsbKyGDx+u22+/XS+//LK+/vprvfrqq7rxxhstkQiTpD//+c/auXOnZ3nAgAGtzhNmpDPPPLPRukCfIDt9+rQ+//zzVtsHAESeYJ9r6NQp6qdEhVxDQWRmNp0Iqy8/37UdRS7hY0QSyQrq/xFvxv5GiqYKN8CS7HZXQiw5Wc7u3eXo3Nnzcnbv7vmeTy+LfH5Qn9eHunWv+qgOA9AmuJNLPlQnuR8gcD8wEHbNVSyHoTrMbrerc+fOnlf37t2VnJzc6qtbTo5v825GaXVYQUGB0tPTNWLECC1evFj5+fkqKSlRfn6+Fi9erBEjRigjI8NrJI3Cwtb/Hm5Ofn7bG0mlTVaGNWfo0KEaOnSo7rvvPknSgQMH9NFHH2nfvn0qKyvTsWPHdOLECZ0+fVrx8fFKSEhQjx491KdPH33rW9/S4MGD1aFDi4Wcpvvss8+8lisqKpSenu7z/o4mfiEVFBQ0Ocl2cRNjXPXt21dbtmzxWrd//35lZmb6HIPbZ5991mjs2b59+/rdDgDAelJSXG/MAjV0qHmTwSI8Ah0KIjeXCrFwMCKJZIWKqqbez4Zzf6NEU4UbAHPUrwpzz+WSLarDALQhTQ05OGeO1MTcWg2Hlc3JyQl/dVjDqjC3MFWH+c3f4YajrDrM17mW3cOZu+daDvbZu6VLpbb0Np9kWAt69+6t3r17mx1GSH3xxRf64osvgmqjsrJS7777rk/bDho0qNG63bt3B3TcPXv2NFp3/vnnB9QWAMBaZsxwDW8XqJ/8xCEp9HNhwjwMBWFt0ZJEajgkt78qKioMiiQ40ZKcBGCOhlVh7keA50iaVW87Uz7sBYBwaW7IwUcfbWLTbK+CgrA/MNBaYsmKiaTmknfNsWpSLwDBDGdeXBzck54W+bMrbNr8MIkIrxEjRjRalx/go/9NzSXBH+kAEB1SU6UxYwLbd9CgQ0pJoTIsmjEUhPVFSxIp2Llo/ZojKIQaJxeHS1okaYukd+u+Lqpb78v+1lFUVKSsrCxlZGRo2LBhysjIUFZWlmWG2gSiQVNVYZI0U9K59ZZNGwoMAEKthSEHbZ9+6rWqrKzMqyrsm03DOJxsa4klqw0z6G9VmFsYhnwMh2CGMw92vnWL/NkVNiTDEFbp6emKiYnxWpefn6/Tp0/73Vb9CYndLrnkkoBjAwBYy1NP+T9lRlzcac2cWRKagGAZRgwFgdCKliRS46HA/UsiNTWUuBm+SU6OkJQnqUhSlqQMScPqvmbVrd9St903rJKcrC+QORUA+K+5qjDV/Zu5wwC0CS0MOdhh/nyvVfPnz29ympmwPTDga2LJSokkf6vC3KyW1AtAsMOZ22zBZcMs8mdX2JAMa2OefPJJOZ3OgF979+5t1Oa4ceOa3LYpXbp00ZgGj/pXVFRo3bp1fp3HoUOHtHHjRq91vXv31uDBg/1qBwBgXWlp0qpVvifE4uJO6957t6t//yMhjQvmC7ZIxcJFLlEj2CSQVZJIM2a4ayACSyJNnz49XKG2yJWcvEZSrqTW5gvOqNvuGs8aqyQn3dasWaPMzExt3XpSLSUn3XMqrFmzxrRYgUjXXFWYG9VhAKJeK8ml9suXy/7VV5Kk8vJyrVixotltw/LAgK+JJaskkgKtCnOzUlIvAMEOZ376dHCjIVjkz66wIRmGsJs8eXKjdc8884xfbSxfvrxR+eiNN94YVFwAAOuZOFHKzZXSW/nsdtSoGj366GaNHPlleAKDqRgKwvq+SSIFxipJpNTUVA0adLcCSSKlp6dbZgjvc875nqRVkuJ93CO+bntXcs8qyUnJVRF2ww1/VHX1G/IlOemeU4EKMcB/LVWFuVEdBiDqtZJcsjkcGrB6tSRp9erVTVaFuYX8gQF/E0tWSCQFWhXmZpWkXoCCHY48JubZoPa3yJ9dYUMyDGF38803N3q69D//+U+Tc4A15dChQ5o3b57XupiYGM2cOdOwGAEA1pGWJuXlueaJysqSMjKkoUNdX7OyXOvXrz9BRVgbEuQIfG1uKAgzpKamNhoNwFdWSiIVFEj79j0mf5NIcXEZWrBgQQgj889HH90p38/BLV6S6xyskpyUpJtvfl4Oxwb5k5x0z6lgFcxzhkjRWlWYG9VhAKKWj8mlPuvWqXLXLq1fv77VbUP6wIC/iSWzE0nBVoW5mZzUKyr65rOKYcO++azCl7d2wc617HQWBjzfenq6a772toRkGMKuS5cuuuOOO7zW1dbWatq0aTp8+HCL+9bW1uq2227T559/7rX+pptuUr9+/QyPFQBgHamp0qJF0pYt0o4drq+LFrW9N28IfigHCxW5RLWnnnpKdj8n/rPb7ZZKIs2aJZ086e+fTPH61rf+o7S0tJDE5K/CQqmkJNAMcoaGDp1imeTkc899oF27fq9AKtzy8/NNTzYVFBRo2LApGjFiqxYvvln5+U+rpORp5effrMWLtzLPGSzFl6owN6rDAEQtH5NLMTU1Sly0SDU1Na1uG7IHBgJNLOXkyPbpp8bH44vkZFcS6+DB4F5lZVL37mEPv6DAlVAaMUJavFjKz5dKSlxfFy92rc/IcG3XHCPmWg5kvnW7XbLQn11hQzIMpvj1r3+tnj17eq376KOPlJGRoQ8//LDJfQ4fPqzrr79eq1at8lqflJTEU2cAALQhQY7A1+aGgjBLWlqaVq1a5XNCzG63a9WqVZZKIgU4l7U+/LCrT0+ChkOQ0xBo0KDHjAnEAPfe20HBVLgFOydDMObPz9WoUadVUrJcLQ3tmJ/vYJ4zWIKvVWFuVIcBiDp+Jpe+c+CA1+/BloTkgYFAhxt0ONRh/nxjY2mBV4X8qFHK+P73lfXb36qotNSVHAv05W82KEhr1kiZma3/vZCf79quubd2Rsy17O9863a7a3uL/NkVViTDYIpOnTrp73//u2JjY73Wf/jhhxoyZIiuvfZaPfHEE3r++ee1cOFCzZw5U7169dIrr7zSqK2lS5fqnHPOCVfoAADAZKmpiuqhIKJpCLWJEycqNzdX6a1M/Jeenq7c3FxNnDgxTJG1Lti8iYl5Fy9BTkOgzz7rYUgcwSoslL788lsB7p0haXjQczIEav78j3XXXWlyOke3sqVraMfq6suY5wym8qcqzI3qMABRx8/kUlO/B5tj+AMDQQ432H75ctm/+sq4eJpQUFCg9PR0jRgxQosXL1Z+fr5KSkqUn5+vxYsXN6qQD2bowVArKJAmTZKqq33bvrratX1Tb+2MmmvZ1/nW09Nd21noz66wim19EyA0MjMz9fe//1033XSTVxlxbW2tXnnllSYTX/XZbDY9+eST+sEPfhDqUAEAgMU89ZTrCTtf/wCRrD8UREFBgWbNmqWtTTxe6P4jMT09XQsWLLBM9ZQv0tLSlJeXp6KiIi1evFibN29WVVWV4uPjNXbsWN1+++2WGYavvmDzJiblXRoJchoCVVQYE0ewgk8uTldFxTNGhOKXggLp7rt7y7d0guQe2rG6OlOzZ8/2eV5lwEjJyckqKytTu08/VdfRo33+MPiOuDjduG2baus9rNpwvnAAbVhpqWSzSQ1GirKkAJNLMyVlS/Jl0MGcnBzNmTOn0chZAQm0KqyOzeHQgNWrVXLrrcHH0oS1a9dqypQpqm7lj7f8/HxdfPHP1bfvGu3adUYT33cNP5ie7vq7zqw/iWbN8u/vUMm1/ezZrvnQ63PPtdzU34CtaTjXsnu+9aIi13vn4mLXe/nERNdUAdOnW//B0FCjMgymmjRpkl5//XX16tXLr/26deuml156yVITYQMAgPCJtqEg1qxZo8zMzFb/CMrPz4+oIdTqP9E5dWqqduxYrPPO+69mz16m7OxsPfHEE5ZMhEnRk0QKchoCWeVz7OCTiymmfCj/058el9PpayLMzTW0oxXmOUPbZLfblZycrG45ObL58eGqzeFQt5wcJScne17+zh0JIIplZ7tekSDA5JIp1WFBVoW59Vm3LiTVYbt37/YpEeZyjRyODU0mwuprbejBUApmKPX8/KYr24yea5n51ptHMgymu+SSS/Thhx9q3rx56t+/f4vbnnvuufrNb36jjz/+WNddd12YIgQAAFYULUNBFBQUaNKkSXV/IA6XtEjSFknv1n1dVLfepbq62vJDqDU3mfS2bbFau7av7r57vO6/P1NFRdb9cyRakkhBTkMQ9P5GCTY5KSUGPSeDvwoLpZKSQDuSa2hHM+c5a0rDYVwnTJigp59+Wnv27DE7NBgt0A9Xc3IkhkYE0JD7d0ok/I4IMrnUcA7FlhgynGxysuuaHjwY8Ktizx6tW7pUjqSk4GJpQk5Ojo+JsBGSVsnX+WFbGnowlEIxlHqkz7UcSRgmEX4577zz5HQ6DW+3Y8eOuueee3TPPffoo48+UnFxsUpLS3XixAnZ7Xadc845GjZsmIYOHWr4sQEAQOSKhqEgZs2aperqIZKektRUZi9DUpakPEmzJRWqurraskOorVnj2xj6u3Z11VVXObVqlTUTlSkpriReMPtbwYwZroRkoOqmITBdsMlJqcIzp0K4GDG0Y3Hx340IJWgtDeMquYY/GjRokJ5++mmNHz8+vMEhNAIdcsvhcO27cKHxMQGIXPV+pxx/8EF1WrbM3HhaEuSQg+7qsFk+bOuuDlsYzO9Mu9334TKa4ezQQY7OnYNqoym7d+/Wrl27fNz6KfmaCHNrbujBUArVUOruuZZnz56t/Bb+CInEYfOthGQYLGfgwIEaOHCg2WEAAIAIkppq/aRXUwoLC7V1azf59hRkhqRcSZMkveoZQs1Kwwz6P5m0TZMmuSr3rPb3XLQkkVJTpTFjAhvOJT3dOj9XwSYnzzzzC6Wm3mBYPL4wYmhHM+Y5a2jNmjX1qlebt2vXLl111VVatWqVJloxww3fBTvkVk6ONGdOZMwLBCD0GvxO6fDcc9If/mDN3xEGDTlo2txhFrNhwwYft0xV0w8Fts499GC43rOGcij1+nMtL126VMXFxaqoqFBiomuEg+nTp1vqb79IRDIMAAAghIqKirRkyRIVFxfr+PHj6tSpk1JSUjRjxgzeyEJ//ON6+TMciGu7VZIyJRVq6dKllupHRk4mbbZoSSJJ0lNPueZV8Of/xm53TUxuFcEmJx9/fLBxwfjIiKEdzZjnrD7vYVxb5x7GNTc3lyeWI1mQVRGRVB1WWloqm80WUR9CR2LMaOMa/E5pX1tr3eow95CDPqiurtbx48d1/Phxvf322571o0ePVqdOnfROp04+V2yZfb8Plb179/q4ZXBPkS1dGr733uEYSj01NdVSf+NFE5JhAAAAIdDSkFL5+flavHgxQxxA//vfRPk7HIhr+wWSLlZx8KUnhjFiMmmr/c0XDUkkyVV1t2qV71V7drtreyv9agomOXn++Yd0880XGB9UK4wY2jHc85w15BrG1b8Mt5WHcYUPDKqKiJTqsOzsbNlstuCGKAuzSIwZbVgzv1MsWx3mx5CD9rpX3LFjsn/2mWd910GDlBSCubcCUVTkuvzFxa6HdDp1clXbz5gRnvfdvr+HSAnqOOH8kyhahlJvq6w7YzUAAECEWrNmjTIzM5udW8UtPz9fmZmZWrNmTZgig5UUFkrHj18Y4N4ZkoaroqVxNsIsFJNJm82dRPJ1GgYrJpHcJk50DUeZ3soINOnpru2sOMrdU0/5PyVGhw61eu65rqEJqBXBf9hRHPZ5zupzDePqvo8Nl7RI0hZJ79Z9XVS3vjH3MK6IQO6qiIMHg3uVlUndu5t9Ni0qLS3VkiVLlJOTozIfK0HMFokxo41rptLUXR2G0CgocL2nGzHCVVmfny+VlLi+Ll7sWp+R4doulOw+v3EL7gmicP5JNGNGcPtbZSj1topkGAAAgIECHVKqINR/icBygk/+TLfUkCqhmkzabNGQRHJLS3MNR1lYKGVluT4EGTrU9TUry7U+L8+ayTwpsOTkP//ZzrTzCfbDkqFDt5s6RM7SpUsljZCUJ6lIUpZcifhhdV+z6tZvqduuqf0Rcex2V0LMiJe/2eswe/rXv1aywyGHw6Hs7Gyzw/FJdna2HBEWc32lpaUk8dqSVipNOzz3nM9DEsJ3a9a4RjZorZo+P9+1XSify+zbt6+PWwY3tnQ4/yRyj1YQCKsNpd4WMUwiEAaVlZVmhwCLaNgX6Bv+ifbrF0nnZ7VYzYqnqeNmZWUFNKTUHXfcofXr1/t8HKOEom2r9Q+rKizsqODejqfogguKdezYMaNCCsqxYwmSYgLe/+jR0zp2zJp9ZeBAae1aqbi4nZ57Lk4lJe10/LhNnTo5NXRorX7yE4dSUmolSaH87zDqZ6t/f+mPf2z6e2Z2J1/O75JLpNdea6f777dr27bmf35GjarR3LnVSk2tDdk5tRZv//7SyJEdtX27/z/nNttWLVgw1eef71D83t2wwS4pV60P5ZpRt90kSa961hYWFhr2+ynU9xWj2+c+aH1lZWXqtXKl5kiaJSknJ0d33HGHzj333JAfO9D+UVZWpiX1EgvhjNkojzzyiGw2mx5//PGA9o/2n61IO7/W4rU/8ojiWph/sH1trQ7df79ig5kU1MdYQilcx/blOEVF7TRpUoKqq20+tVldLU2a5NTLL3v/Pxl1H5wwYYLWrl3rwx7Fcr2fCMwFFzh07JifExcH4Y9/bKerrvL9OkuS3e7Uo49W6tix2hBGFhmqqqpMO7bN6XQ6TTs6EKGWLVumZU1M9FlZWen1ZP+CBQvUu3fvMEYGADDT7t27dc899wS8/xNPPKF+/foZGBGs7Oc/H6/9+zsH0cIOPfHEBsv0mfvvz9SuXYEPR3f++V8rO3uzgREh2u3Z01kbNvTR3r1JqqqKVXx8jfr2PabLL9+vfv2Omh2eJGn37i761a/GyuHwJ1FcpWnTntX3v2/eB9y7d3fRvfeOltPpT2VPlaRMSYWSpD59+ujPf/5zKMIDgvbSk08q5803JUn9JH0q6eqrr9att95qZlgteuaZZ/Taa695rbN6zPWVl5fr9ttvlyQ9/fTT6m7xYTQRHHt5uS6//XbF1NS0uN2pdu30xv/9n6rpD4YI9P34oEGHNHdubggiku6//37t2rWrla2Gy1VtHpgnnngz7O/9tm8/U/PmjfTpPV5c3Gnde+92jRz5ZRgis74DBw5o9uzZnuX33ntPQ4YMCcuxqQwDArBv3z5t2rTJ7DAAABazYcOGoPe3SmIDoWe3nw5y/xpL9Ze+fY8GlQzr29caFW6IHP36HVW/fjvMDqNF/fsf0b33bvf5wxKbrVrTpq3V975nbqVHTs5QPxNhkquCbIGki11L8a1VlIXWnj17tH79eu3du1fV1dWy2+3q27evJkyYYKnfnQi/8vJypW/apA51y+7qsHXr1un666+3ZJKmvLxc69evV09JTrmSd5K1Y25o9erVqqlLjKxevTpikngIzMDVq1tNhEmu6rBeK1fq45//PAxRRbfduzsH/F58166u2rOnc0gSSjNnztSvfvUrOVqoEpTekZQvqZVxyZswaNAhUx6CGjnySz366Gbl5Axt8boPGnRIM2eWqH//I+ELDs0iGQYE4LzzztO4ceMarW9YGQYAaFv27t1r6v6ILMEmj1JTrTX974QJ+7V2ra/zAjR2+eX7DYwGsA5fPyzp0+czzZr1sfr3N/dnO5gP01xDHA2X9I4f84QYa/fu3crJyWnyKfRdu3Zp7dq1GjRokGbOnKn+/fubECHM9tbKlcqpN0jSTEnZkj6tqbFsksadSJojVzJsVt36GgvHXJ87mecWSUk8qygvL5fNZouIa2YvL1fvZoZ/b8qATZtU+uMfUx0WpA0b+gS9fygeMurfv7/uvfdezZs3r5WE2Cz5NjzzN+LiTmvmzJJgQwxY//5HNHdubkSMVgAXhkn0walTp7R161a98847+uqrr/T111+rqqpKNpuNSYHhZefOnbrwwgs9y+5hEkeNGqWEhAQTI4NVVFZWatu2bZ5l+oZ/ov36RdL5WS1Ws+JpeNwHHnhAH3zwQcDtDRkyRHl5ea0ex8jzC0XbVusfVlVc3E7jxnUKeP9Nm4575qmyissvD2x+pFGjarR+/YkQRBRdov1nK9LOL5B4fZl3LlyxNOeuu+xaujQu4FikRZLu1KZNm5SSkhJEO9/w9fzWrl2rKVOm+DR3p91u1/Lly3XllVca3vcirS+3JWVlZXpr6FDdVuv987ZQro9h4+LiVFxcHNJ5uPztH2VlZRo+fLh6OBzaXbfOPbSjwhRzsO6++26v+c4kV7WIv3OHRfvPVkvnd/fddwc131ooNBev/e67Fdfg/7s1h266Kai5w8zsG+E6dmvHmTChY4vzqbam/pDlobgP7tq1S/fff7/X+oYGDPil9u+f51M1vd3u1PLlVbryytYrEGEtRUVFuvTSSz3LDJNoEQUFBcrOztZrr73W6M200+lsNRk2f/58rye8r7nmGl1xxRUhixfWlZCQoKSkJLPDgAXRN4IT7dcvks7ParGaFU9iYmJQ+3fu3NmnuEN5fqFo22r9wyouuUQaM0bautX/fdPTpUsuCTyRFip/+YuUmemajNtXdru0aFEsfSQA0f6zFWnn50u8l1ziejUWTPIpsFia8/77wR49Renp6bqk6RM1RFPnV1BQ4HMiTJKqq6s1ZcoU5ebmauDAga22b3S8MMfK7Gw9VNs48eypDnM4tGjRIi1cuDBsMbXWPxYtWiSHw6E5UqOhHSXJYULM/igtLdWKFSsaDfG4fPlyPfTQQ+rZs2fAbUf7z5b7/NzXUFLQ1yyUEhISlHT0qFQXqz8Sn39e7efOlQw6t1D0jaIiackSqbhYOn5c6tRJSkmRJk/2rugOV79seJyqquDaq6r6Jk0Qivvg+PHj9fbbb6uoqEhLly5VcXGxKioqlJiYqJSUFE2fPl2pqakqKJBmz5by85tvLz1dWrDAprS0jobFiPAxcyhtkmFNOH78uKZPn65//vOfklyJr0AkJCRo4cKFstlskqTt27eTDAMAIIoNHTq0xSfdWmPUE/SIHE89FVjyaMGC0MUUjLQ0adUqadIk387Jbndq1Sqb0tJCHxsA3xw/Htz+NluSFpjwS2rWrFn1EmHDJc2QlCKpk6TjkoolLZFrXhKX6upqzZ49W2vXrg1rrDBHaWmpeq1c6Uko1ddB3ySYcnJyNGfOHEskHEpLS7VkyRL1lKtHu3mSd3XLVoq5oezsbE8yr/4Qjw6HQ9nZ2ZZN4lnJ07/+tZIdDn0qWf+aZWdLLQ6F17T2tbU6/uCD6rRsmfExBamgQJo1q+kH2PLzpcWLO2nQoEzT54XqFORzcvHx4amwSk1NVWpqarPfT0uT8vJcycelS13Jx4oKKTHRlXycPl1qYXegRdaaaMAC9uzZo7S0NP3zn/+U0+n0VIA1fPliypQpOvPMMyW5Emrbtm1rctxyAAAQHW655Zag9p8+fbpBkSBSuJNHdrtv29vtru2tnDyaOFHKzXU9sdmSQYMO6bXXKjVxYnjiAuCbYD9MO//8c5UW5l9ShYWF2rp1q6QRkvIkFUnKkmsOs2F1X7Pq1m+p284lPz9fxcXFYY0X5nj617/WtCaqwtxmSjpX3yRprKB+Iql+Es+dvHOzUsz1NUzmua+xW05OjsrKyswJrhWlpaWWiM2dxHX/f1v5mtnKylylUwHq8NxzksXObc0a14NrrY3ksGtXV/3qV2O1fbvrc+CioiJlZWUpIyNDw4YNU0ZGhrKyslRUVBSyWIN9rrJv32OGxGGU1FRp0SJpyxZpxw7X10WLSIQhOCTD6jl69KgmTpyojz76yCsJ5k6KJSUlKTbW92K6Dh066MYbb/SqLHvllVdCEToAALCAlJQUjRkzJqB909PTW3xCDtHL1+RRerpru0hIHrmf6CwslLKypIwMaehQafToGl111V498cSbmjs3V6mp1przDEDwH6ZdemlXQ+Lwh2v6gmsk5Upq5ZepMuq2u8az5rnnngtZbLCGlqrC3OonmKyQcGiuKswtEhJLDZN5kZLEU2mpnn7wQUvE5k7iWjFZ21CH+fMDqgpzc1eHWUVBge+jHUiSwxGjuXNHKD19lkaMGKHFixcrPz9fJSUlys/P1+LFizVixAhlZGSooKDA8HhnNPWLwg+XX77fmEAACyMZVs/06dO1a9curyTY+eefr+eee05ff/21Dh8+rAsuuMCvNidNmiRJnmqyDRs2GB43AACwjqeeekp2X8t86tjtdlOGlIJ1NJc8yshwLRcWur5v5YqwpjR8onPduhP62c92qF+/o2aHBqAZwX6YZkaR8+bN1ZJWSfJ1Dor4uu1dFWIlJSWhCQyW0VpVmJuVEg7NVYW5WT2x1NIQj1ZP4lU8+KB6/u1vpsdWVlbmSeJaLVnbkL28XO0DmCusIStVh82a5d9Q5pJUU9Ne77//sxa3yc/PV2ZmptasWRNEdI2lprrmIw7EqFE1vD9Hm0AyrM727du1evVqTxJMkqZNm6Z3331XP/7xj3XGGWcE1G56erq6desmyTVUYl5eXsBzkAEAAOtLS0vTqlWrfE6I2e12rVq1KuxDSsGaGA4EgNmC/TDNjN9Xu3f/XL4nwtziJbkeRDke7ERpsDRfqsLcrJJwaK0qzM3KiaWIHeKxtFT2v/1NP62tVbLJsS37/e+9krhWStY25OjcWcc/+ECfvvOOzm3fXslSQK/zYmJU5m8GKgQKC1sfGrF5GXLNXdm86upqTZo0yfAKsaee8n34dTe7XZo71/xrDoQDybA6c+fO9fzbZrPpiiuu0NKlS/0aFrE5I0aM8CTAqqqq9MknnwTdJgAAsK6JEycqNzdX6a2Me5eenq7c3FxNjIRx7wAAbUYgH6bFxZ025cO0wkKpquqiAPd2fWDZKdiJ0mBpvlaFuVkh4dBaVZibVRNLkTzEY8WDD6p9ba3n2poVW3l5ub714ovNJhKtdM0kqTYuTs7u3fVoTo4+O3VKX0kBvT47dUrZTz5pwhl4W7o02BZaL5Ourq7W7Nmzgz2Ql0DnI2bocrQVJMMknT59WuvXr/dUhcXExGjRokWGtd9w/o9du3YZ1jYAALCmtLQ05b3wggpjY5Ul18dtQ202ZaSlKSsrS4WFhcrLy6MiDABgOf5+mBYXd1r33rvdlA/TjPjAcujQoUaE0qKioiJlZWUpIyNDw4YNU0ZGhrKyslRUVBTyY7dl/lSFuZmdcPC1KszNiomliB3isa4qzG2mZFp12FsrVzaZxLVCsrY5ZWVlWrJkSdDtWKEPFxcH20KKT1vl5+cbfh+IxvmIAaOQDJNriMSKigpJrqqwyy67TH379jWs/XPOOcdr+fPPPzesbQAAYGHZ2UqtqdEiSVsk7XA6tWX0aC1atKjRwzIAAFiJrx+mDRp0SI8+ulkjR34ZnsAaMOIDy5/85CcGRNK03bt36/LLL9eIESO0ePFi5efnq6SkRPn5+Vq8eLFGjBihjIwMw4fKgou/VWFuZiYcfK0Kc7NaYimSh3h0V4W5mVUdVl5ervRNm1pNJFrhmtXXvXt3lZWV6eDBg0G9ysrK1L17d1PPJfjRcxN93nJp8E91NBKt8xEDwSIZJmnfvn1ey+PGjTO0/S5dungtuxNvAAAgipWWSk09GZmTY5lJoQEAaElrH6Zt2nRcc+fmqn//I6bFGOwHlh07nqmUlBRDYmlo+/bt+tWvfqXt27e3uF1+fr4yMzO1Zs2akMTRVgVSFeZmVsLB36owNyslliJ2iMcGVWFuZlSHvbVypX5aN91KU6xaHWa325WcnGzIy9f5l0Ml+NFzff/stzj4pzqaxXzEgDeSYXI9cSHJM69Xz549DW0/Pt41ka/NZpMknThxwtD2AQCABWVnSw5H4/UOh+t7AABEiOY+TEtJMX+OkWA/sOzf/yxjAmlg9+7dmjdvnhwOh6ThkqdO/N26r4vq1rtUV1dr0qRJVIgZKLm6Wj8LYh74O+Li9FVxcVirVJKTk1VWVqaPpk3ze2jHj3/6U9MrayJ5iMeGVWFu4a4Oa6kqrGFMCmNcbU3wz0gU+7wlRRNA+JAMk1RZWem17E5eGeXw4cOSvkm2JSUlGdo+AACwmOaqwtyoDgMAwBDBfmA5dmzQj/83KScnRw7HUEl5kookzwyiw+q+ZtWt3yJphCRXQmz27Nkhiactsj/5pGxNPZjkI5vDoW45OWGtUrHb7Uqurlb8ypV+7xv/t78p+eRJUytrInaIx2aqwtzCWR3WWlVY/ZisWB0WLWb4U5rZJN+HPkxM9H1IRQDBIRkmqVu3bl7LR44cMbT9hnOENTweAACIMs1VhblRHQYAgCGC/cBy+nRj4qjvnXfe0a5d/SXlSmpl0jVl1G13jSTXkIlFRUXGB9XWtPZgkq/MeICptfeRzTH5/WUkD/HYXFWYW7iqw8rKylqtCmsYk8IQV1uUmiqNGRPo3nmS3vF561AN1QugMZJhcpWhS98MY7h3715D28/Ly/Na7tGjh6HtAwAAC/H1wxeqwwAACFowH1imp4dm3pQ//ektSask+TrqTHzd9q4KsaVLfa8oQDOSk13vsw4eDO5VViaFc7jBYJN4Jr6/jNghHlupCnMLR3XYst//3qeqsPoxRUp1WFFRkbKyspSRkaFhw4YpIyNDWVlZlk7+P/WU5H+BZZUk/yp8p4fiqQwATSIZJqlfv35eyw2TV8E4duyYNm/e7Em0tWvXTmlpaYa1DwAALMbXp3mpDgMAwBCBfGBpt0sLFoQmntdfv1a+J8Lc4iW5AiouLjY2oLbIbnclxIx4hXO4wUCrwtxMfH8ZqUM8tlYV5hbq6rDS0lJ968UX/U4kWr06rKCgQMOGTdGIEVu1ePHNys9/WiUlTys//2YtXrxVI0aMUEZGhiXnS0xLk1at8udXQJWkSZIKfT5Genq6UkPxVAaAJpEMkzR06FCdeeaZklzzeuXm5hp2A/nLX/7iNSfZRRddpM6dOxvSNgAAsBZbWZl/T/NSHQYAQND8/cDSbndtH4rnVAsLpcrKoQHunSFpuCoqKowMCZEikod2dIu0IR59rApzC2V12NO//rWm+ZCUayomq1aHzZ+fq1GjTqukZLlamjcxP9+hzMxMrVmzxsRomzZxopSb66okbkmfPp8pNvbbkl71uW273a4FoXoqA0CTSIbVmTBhgpx1pci1tbX63e9+F3SbH9z83sAAAG7hSURBVH74oR599FHZbDY5nU7ZbDZdc801QbcLAACsqcP8+f59AEB1GAAAhvD1A8v0dNd2EyeGJo7gRzicrsTERCNCCYlIHOosYkTq0I5uETjEo69VYW6hqg4rLS1Vr5Ur/aoKaxiTQhBXMObP/1h33ZUmp3N0K1u65k2srr5MkyZNsmyFWF6e62GHrCwpI0MaOtT1NStL2rTpuP785+26//7LFBcX51Obdrtdq1atYvQwIMxizQ7AKn7+85/rb3/7mydx9de//lWXX365fvSjHwXU3r59+/T9739fx48f9wyRaLfbdeeddxoZNgAAsAh7ebnar1jh/445OdKcOVLPnsYHFYDi4mI9//zzKi4u1vHjx9WpUyelpKRoxowZDOEBALA09weWRUWupFRxsVRRISUmSikp0vTpoZkjrL7gRzhMUUrK+wZEYqyCggLNmjVLW7dubfS9/Px8LV68WOnp6VqwYAEf7gbKbg/vkIxGM2qIx4ULjYupJX5WhbnNlJRdV4W10KBYk6urdWtMjBRAZZg7pj+1b6+Xt20L73xrzSgokO6+u7fkc3rPNW9idXWmZs+ebej0NUZKTW36HnLsWK02bpRGjhypRx99VC+++KK2bdvWbDv8rgTMQ2VYnREjRui6667zVHA5nU795Cc/0Z/+9CdPxZgvTp8+rWXLliktLU27d+/2qgqbMWOGkpOTQ3gWAADALANXr5YtkoaFaWD37t26//77NW7cOC1evFj5+fkqKSnxfMBl5fH8AQCoLzVVWrRI2rJF2rHD9XXRotAnwiTp+PFgW0jU9OnTjQjFMGvWrFFmZmaTibD68vPzLTvUGUIsAod49LcqzC0U1WH2J59Uu1OnAt6/g6S7Tp1STk5OWOdba85Pf3pcTqe/dW6ueRPz8/MjutK0f//+Wr9+vQoLCz1VtEOHDvVU0RYWFiovL49EGGASKsPqmT9/vrZs2aLy8nLZbDbV1NTo3nvv1TPPPKNp06YpIyNDjgYfcn388cf6+uuvtX//fr311ltas2aNysrKPAkwSbLZbBo4cKD+3//7f2acFgAACDF7ebl6r18feAMmV4dt375d8+bNa/Q+pyH3h1yrVq3SxFCNLwUAQATr1Cm4/RMTZalK7IKCAk2aNEnV1dWShkuaISlFUidJxyUVS1oi6R1JUnV1tSZNmqTc3Fw+7G1L3EM8GiEcw4QGWBXmZmh1WGmpnEuWyBZcK5opafD//Z/K5sxRTxNHnCgslEpKAv1F6Jo3cenSpZb6PRiI1NTUiD8HIBqRDKund+/e+te//qVvf/vbOnnypKeq6+OPP9avf/1rz3buSjGn06nzzz/fqw3399yJMKfTqU6dOumll15Sp2DfFQMAAEsauHq1YmpqAm8g3MPC1FNUVORTIsyND7kAAGheSoqUnx/4/ldccZZhsRhh1qxZqq4eIukpSU1NyJYhKUtSnqTZkgpVXV1t6aHOEAIRNsRjxYMPKjHAIQmlb6rD7s7J0Zxgk0/JyTq5e7eOHz+u48eP6+233/Z8K6HzpVr933P03ocdVHminRI61urC80/qxz84oosuqG7U1NudOinR5GESjZg3sbj470aEAgCNMExiA2PGjNF///tf9ejRw1Pd5U6KuV/11V9ff3v398455xxt3LhRF1xwgRmnAwAAQizoqjA3EyYNl6T77rvP50SYm/tDLgAA4G3GjOD2f+CBHsYEYoDCwkJt3dpNUq6aToTVl1G33TWSFPFDnSGKlZaq0/PPB93MHXFx+syIObrsdtl79VL3wYPVddAg2Xv1UtnJofrtwpv03VuG6Nnnz9D24o56/yO7thd31LPPn6HLf9BXl03upX2Vg9V98Dev5F69TB8m0Yh5EysqKgyIBAAaozKsCePHj1dxcbGmTZumtWvXSvqm0ssX7oTZhAkTtGzZMp199tkhiRMAAJjP0bmz1tU9Ajl27FglBjO0SziGhamnsLBQ27dvD2hf94dcDP8BAMA3UlOlkSNrtH27/x+3pKeHZ14zX/3xj+slrZJrLh9fxNdtnympMCqGOkMUSk6WzYAH0GySuiUmGl4Rt337mZo3b6QcjpgWt9uxo5NGjTqpJ544oF/+coChMQTDiHkTg/p7CgBaQDKsGWeeeab++9//avv27Zo7d65effVVnTx5stX9YmNjNX78eD344IO65JJLwhApIkFlZaXZIcAiGvYF+oZ/ov36RdL5WS1Ws+KprKxUbVycHHFxkqTj8fFydvB3suh6HA7Xq4njtLQcqMWLFwe9/xNPPNFovdX6B6yDvhGcaL9+kXZ+VorXzPtgOI4b6uMY3f4jjzj0/e+f0eqH2fXZ7U49+miljh0LfOg2o61de418T4S5xUtaIOliFRYW6tixY8YHFuGs9Lsj0hh27YJ5v15fM+/dA5WX5/ApEebmdHbQXXf1VHX1et1xx2jD4vBVU/8f8fEdFdzHzRW64IIL/P7dYebPVTTcC41um99zaElVVZVpx7Y5G477hyadPHlSb7/9trZs2aKysjJ9/fXXOnz4sOLj49W9e3edeeaZGj16tC699FKeYGgDli1bpmXLljVaX1lZqYKCAs/yggUL1Lt37zBGBgCA7+6//37t2rUr4P3PP/98ZWdnGxgRAADRwdfqDkmKizute+/drpEjvwxDZL7Zvbuz7rlnfBAtpKpPn0P685//bFRIhtmzp7NeeqmL3n8/TidOxMhmO674+F0aPDhPP/jBt9SvXz+zQ0Qbdf/9mdq1q2sAe+br8cfz1L9/f8Nj8tfTTw/T2rV9g2hhkZ544iQ/h0AUO3DggNe0C++9956GDBkSlmNTGeajDh066JJLLqHaC5Kkffv2adOmTWaHAQBAUKqrG0+87Q8zn+gCAMDKRo78Uo8+ulk5OUNb/HB70KBDmjmzRP37HwlfcD7YsKFPkC1MV3z8QkNiMcru3V301FMDtH//OY2+d/LkCOXn36T8/Dz16fMnzZqVbonEAsJvz549Wr9+vfbu3avq6mrZ7Xb17dtXEyZMCGmCZvfuzgEmwiQpXY8//gc9/bT5fXbChP1BJcP69Hld/fpNMTAiAPgGyTAgAOedd57GjRvXaH3DyjAAAKws2Am24+P9HToJAIC2o3//I5o7N1d79nTWhg19tHdvkqqqYhUfX6O+fY/p8sv3q1+/o2aH2aS9ezsH2UKK+vYNpjrEWNu3n6m5c0eopqZ9K1tmaP/+4Zoz5ybdf/9hjRw5MizxwXy7d+9WTk5Ok6Mm7Nq1S2vXrtWgQYM0c+bMkCRKg01Af/HF1dqzZ4/pFVX9+h3VoEGHAkrs2Wz5mjXr4hBEBQAuDJMIGGjnzp268MILPcvuYRJHjRqlhIQEEyODVVRWVmrbtm2eZfqGf6L9+kXS+VktVrPiCddxQ3Wcu+66S0uXLg14/xkzZjQ7Z5iV+gesg74RnGi/fpF2flaKl/ugtdq3Ut8IVEZGgnbu9H3Os8Z2aNOmI0pJSTEqpIAVFbXTFVfE+zWHm1SluLjL9b///T+lpqYaGk809A9/FBe304oVcSopaafKSpsSEpwaOrRWt9ziUEqKf3PkherarV27VlOmTFF19WBJMySlSOok6bikYklLJL0jyfUw2fLly3XllVcGfdz6JkzoqG3bgqlZ2KJrr31cy5cvNyym1jT3/1FU1E5XXZWg6mqbH61V6dFHNwc895mZP1fRcC/kPohwKioq0qWXXupZZphEIMokJCQoKSnJ7DBgQfSN4ET79Yuk87NarGbFE67jGnWcrKysoJJht99+u09xWK1/wDroG8GJ9usXaednpXi5D1qrfSv1DV8FG25ioiwzzcQDD0gOh797xcvhmKdf/eoe5eXlhSIsj0jsH74oKJBmzZK2bm38vW3bpKVL4zRs2HEtXdpJaWmBHcOIa1dQUKCf/OTPcjjekJTexBYZkrIk5UmarerqQk2ZMkW5ublKCzTwJgQ/+niitm7dampfcv9/jB8vrVolTZok+TIqu812Uk88UaZf/nKC4bGYIRruhdwHEUpmjjDTzrQjAwAAwFSpqakBD/+Tnp5u+JPSAADAGoIt6LriirMMiSNYhYVNJ2N8k6H8/GoVFRUZGVKbsGaNlJnZ+rXfsaOTRo06qfnzPw5PYE24+ebn5XBsUNOJsPoyJOVKukbV1dWaPXu2oXF06hRsCxU6duyYEaEYYuJEKTdXSm/lsg4bdlzbtnXQL385IDyBAWjTSIYZoKamRs8884y+853v6KyzzlJ8fLx69+6t7373u3rxxRfNDg8AAKBZjz32mOLi4vzax263a8GCBSGKCAAAmG3GjOD2f+CBHsYEEqQgCuDrTA+qir4tKijwvSJIkpzODrrrrp6aPz83tIE14bnnPtCuXb+X5GuVQrykVZJGKD8/39BEafAjihYHH4TB0tKkvDxXUjorS8rIkIYOdX3NynKtf/fdwCsDAcBfDJNYp6KiQn/84x89yzabTb/5zW9anVi+tLRU11xzjXbu3ClJck/BVlZWpk8//VT//e9/tXjxYv3jH//QWWdZ48koAAAAt9TUVN17772aN2+eHD6MIWS327Vq1SpDh4UBAADWkpoqjRkTWFVVerprfysoLg62hRQVF//dgEiCU1QkLVniOp/jx11VRCkprqSlVa6126xZvifCvhGvu+9ur8zMgrC+x7z33g7yPRHmFi9pgaSLtXTpUsNGSpgxQ1q8OJgWllp2GLrUVOv1UwBtE5Vhdf7zn/8oOztbc+fO1dy5c5WXl9dqIuzEiROaMGGC3nvvPTmdTjmdTtlsNs/Lve6tt97SlVdeqYqKijCdDQAAgO9GjhypRx99VIMGDWpxu/T0dOXm5mrixIlhigwAAJjlqaekVj4WacRul6xUPH78eLAtJJr6WU5BgSu5OGKEK1GSny+VlLi+Ll7sWp+R4drOCoIZltLpHKOf/nShsQG1oLBQ+vLLbwW4d4ak4SoOPtvqkZoqnXHGhwHunSfpHWVmZhoWDwBEI5JhdV555RVJ31R2/exnP2t1n4cfflgfffRRkwmw+okxp9OpkpIS/eIXvwjlKQAAAASsf//+mjt3rjZt2qSsrCxlZGRo6NChysjIUFZWlgoLC5WXl0dFGAAAbURamrRqle8JMbvdtb2V3ioYMQ9TYmKiEaH4zdd5t/LzXdutWROeuFoS7IiSJSUjwzZHmxFDaBqdKM3OPiGpys+9qiS55i+bM2eOofEAQLQhGVZny5YtstlskqSYmBhdddVVLW7/9ddf6y9/+YtnH8mVSEtJSdHkyZM1btw4z/fcCbHly5drx44doTsJAACAIKWkpGjRokXasmWLduzYoS1btmjRokWGDQEDAAAix8SJUm6uqzqpJenpru2sVjxuxDxMKcE34jd/592qrnZtb3aFmBHDUoZrjjYjYjU6UTp5cn8lJ98h3xNiVZImSSrU0KFDeb8OAK0gGSbps88+02effSbJlbhKS0tT586dW9zn+eef14kTJyS5kmAxMTFauXKlioqK9Pe//10bN27Utm3blJyc7NnH6XRqyZIloTsRAAAAAAAAA6WlSXl5rmHlsrJcw/INHer6mpXlWp+XZ62KMLcZM4JtYammT59uRCh+CWTerepqafbs0MTjKyOGpTRy6MGWGBFrKBKl998/RDExl8o19GFL8iRlSnpVcXFx+utf/2p4LAAQbUiGSdqzZ4/X8rBhw1rd54UXXpAkz3CIt956q2688UavbVJTU7VkyRLPNk6nU6tWrTIucAAAAAAAgDBITZUWLZK2bJF27HB9XbTItd6qUlOlMWMC3TtP6en2sFfbBDPvVn6+FKZRBptkxLCU4ZqjzYhYQ5Eo7d+/v+bMuVyxseMkpUpaJGmLpB11XxfVrb9YUqE6dOigl156iaHMAcAHJMMk7d+/X9I384Wdf/75LW5fWVmprVu3eg2R2Nx8YBMnTvRq7+DBgzpw4ECQEQMAAAAAAKA1Tz0ldehQ6+deVYqLu1cLFiwISUwtCXaUwDCNMtgkI4alDNccbcHGeuaZX4QsUTpy5EhlZ2dr1Kj2ku6UNFbSRXVf75T0jiQpPT1dmzdv1kSrjU8KABZFMkzS4cOHvZbPOOOMFrfPy8tTTU2NZ3no0KHq379/s9tPmDDBk2iTxLxhAAAAAAAAYZCWJv3zn+0UF3faxz2q1L79j/XSSw+YUm0T7CiBmzcHPf5fwIwYljJcc7QFG+vjjw82JpBm9O/fX+vXr1dhYaGysrKUkZGhoUOHKiMjQ1lZWSosLFReXh4VYQDgh1izA7AC99xfbq09hbK1rl7dPfzh1Vdf3eL2gwd73yA///zzAKIEAAAAAACAvyZOlLZsidFPf3pcJSUtjY+Xp6FDl+ivf/2VaUmGYOey2r37C0nNP7AdSqmp0tChrV3j5uRJekfTpy8xOqwmuYfQDGRIyvPPP6Sbb77A+KCakJqaGvahOgEgWlEZJun0ae+ng06dOtXi9m+//bbXcmZmZovbd+3aVZI8wyoeO3bM3xABAAAAAAAQoLQ0aceOTioslCZNKtdZZ+1Rx4671bHjOzrrrJc0aVK2Cgvt2rHjr6ZW2wQ7l9WJE1+qyMSJw/76106y2U76uVeVpNlKT08Pa+Lnqacku92/fTp0qNVzz3UNTUAAgJCiMkyNK8GOHDnS7LZOp1N5eXmy2WyeyrCMjIwW24+JifFaPnnS3zcFAAAAAAAACFZqqvTii8mSkuutHW5WOI2kpEj5+cG0UKylS983rZooLU164okDuuuunpLifdijStIk2e07tWBBboij85aWJq1aJU2aJFVXt7693S6tWtVOjEwIAJGJyjB9M0eYu3Lro48+anbb7du3eyXLBg0apM6dO7fYvnt797xhHTt2DCJaAAAAAAAARCMj5t0qDnbisSD98pcD9Kc/Fchma20MwjxJmbLbX9eqVatMqcibOFHKzZXS01veLj3dtd3EieGJCwBgPCrD5D2nl9Pp1JtvvtnstqtXr/b822azaezYsa22//XXX3stJyUl+R8kAAAAAAAAolpqqhQf/66qqi4KYG/XvFsVFUONDstvv/xlpjIzC/TTn05VSclISSmSEiVVSCqWtFTSO0pPT9eCBbmmDk2Zlibl5UlFRdLSpVJxsVRRISUmuir1pk93/b8AACIbyTBJQ4YMUfv27VVTUyNJKi4u1tatWzVmzBiv7aqqqrRs2TKvIRIvvfTSVtt///33vZb79OljXPAAAAAAAACIGv37/1klJYvk2zCDbq55t6TG04GYJS0tTTt2LFNRUZGWLnVVrFVUVCgxMVEpKemaPn2JacM5NiU1laQXAEQzkmGS7Ha7rrjiCq1Zs8aT6PrJT36idevWqW/fvpKk2tpa3XHHHTp48KBnOEW73a5rrrmm1fbfeecdT7uS1K9fv9CdDAAAAAAAACLW2LF2lZRMkrRK/sy7JRVKklJSUkIWWyBSU1MtlfQCALRNzBlWZ9q0aZ5/22w27dmzR4MHD9aVV16pH//4xxo4cKCWL1/uVRV2ww03tPq0TXl5uXbu3OlZTkpK0nnnnReq0wAAAAAAAEAEmzFjhqRXJWXKNfRhS/LqtnvVs2b69Okhiw0AgEhFZVid6667TpmZmcrNzfVUfjkcDq1fv16SPFVd7u/FxsbqN7/5TavtvvLKK6qtrZXNZpPNZtPo0aNDdAYAAAAAAACIdKmpqRozZoy2bt0q6WJJwyVNV3PzbtWXnp5OFRYAAE2gMqyev/3tb+rZs6en8sud+Gq4LEl//OMfNWDAgFbbfPHFFz1tSNIll1wSgsgBAAAAAAAQLZ566inZ7fa6pXck3SlprKSL6r7eqYaJMLvdrgULFoQzTAAAIgbJsHp69eql3NxcjR8/Xk6n0/OS5Pm33W7X/Pnzddddd7Xa3gcffKANGzZ4JdGuvvrqkMUPAAAAAACAyJeWlqZVq1bVS4i1zG63a9WqVUpLSwtxZAAARCaGSWygT58+euONN7Rlyxa98sor+uSTT1RRUaFu3bpp9OjR+tGPfqSzzjrLp7aWLl2qzp07e5bPOussy01iCgAAAAAAAOuZOHGicnNzNXv2bOXn5ze7XXp6uhYsWEAiDACAFpAMa8bFF1+siy++OKg2Hn/8cT3++OMGRYRIVllZaXYIsIiGfYG+4Z9ov36RdH5Wi9WseMJ13FAeJxRtW61/wDroG8GJ9usXaednpXi5D1qrfSv1DViPv/1j4MCBWrt2rYqLi/Xcc8+ppKREx48fV6dOnTR06FD95Cc/8Tx4fezYsVCFbQnR/rMVaednpXjNjCUa7oXcBxFOVVVVph3b5nSPAwjAZ8uWLdOyZcsara+srFRBQYFnecGCBerdu3cYIwMAAAAAAAAAwHoOHDig2bNne5bfe+89DRkyJCzHpjIMCMC+ffu0adMms8MAAAAAAAAAAACtIBkGBOC8887TuHHjGq1vWBkGAAAAAAAAAADMRTIMCMDUqVM1derURut37typCy+8sNH6UaNGKSEhIQyRweoqKyu1bds2zzJ9wz/Rfv0i6fysFqtZ8YTruKE8Tijatlr/gHXQN4IT7dcv0s7PSvFyH7RW+1bqG7Ae+kfgov3aRdr5WSleM2OJhnsh90GEU1FRkWnHJhkGhEFCQoKSkpLMDgMWRN8ITrRfv0g6P6vFalY84TpuKI8Tirat1j9gHfSN4ET79Yu087NSvNwHrdW+lfoGrIf+Ebhov3aRdn5WitfMWKLhXsh9EKEUHx9v2rHbmXZkAAAAAAAAAAAAIMSoDGvFhx9+qM2bN2vr1q06cOCAjhw5oqNHj+rUqVMBtWez2bRnzx6DowQAAAAAAAAAAEBTSIY1Y/Xq1frTn/6k/Px8r/VOpzOodm02W1D7AwAAAAAAAAAAwHckwxo4fvy4Zs6cqRdffFFS08mvQBNawSbSAAAAAAAAAAAA4B+SYfU4HA5dfvnl2r59u5xOp2w2m2w2m1cSq34irLn19ZEAAwAAAAAAAAAAMA/JsHruvPNObdu2rVESLDU1VQMGDNC6det05MgRT6JsypQpqqqq0qFDh/TJJ5/ok08+kfRNYszpdKpz5876/ve/z/CIAAAAAAAAAAAAJiAZVufDDz/U0qVLPUkwm82m4cOHa8WKFRoyZIgkafjw4Tpy5Ihnn2effdarjYMHD+qFF17QwoUL9fHHH8tms+nYsWP67LPPtGrVKnXu3DmcpwQAAAAAAAAAANDmkQyrM2/ePE8STJIGDBigN954w68EVo8ePTRr1izdfvvtevjhh5WdnS2n06nXX39d48aN01tvvaWkpKRQnYIhSktLtXPnTpWVlenIkSNyOBw644wzdMYZZ+j888/X0KFDFRMTE9IYdu/ereLiYpWWlqqyslLx8fE655xzNGzYME9iEgAAAAAAAAAAwBckw+qsWbPGqyrsySefDLiSKzY2Vn/4wx/Ur18/zZgxQ5JUUlKiW265Rf/6178MjDp4H374of73v//pjTfe0FtvveVV+daUhIQEjR8/XrfddpuuvvpqtWvXzpA4qqqqtHjxYj399NP6+OOPm92uZ8+emj59un7xi1+oS5cuhhwbAAAAAAAAAABEL2MyGRHuo48+Unl5uWe5d+/euvLKK4Nud9q0abrzzjvldDrldDr1n//8R6+++mrQ7QarqqpKv//97zV06FANHjxYv/jFL/Tvf/+71USYJFVWVurVV1/Vd7/7XQ0bNkwFBQVBx7NlyxYNHjxYd999d4uJMEkqKyvT7373Ow0cOFD//ve/gz42AAAAAAAAAACIbiTD5KracrPZbPrOd77j035Op7PVbR555BF16tTJM/zi/PnzAwvSQF9++aUeeughvffee0G1s3PnTqWnp2vhwoUBt7F69Wpdeuml2r9/v1/7lZeX69prr9Vf/vKXgI8NAAAAAAAAAACiH8MkSjp06JAkeYZIbG5eKndCy62qqkodO3Zsse3OnTvrqquu0qpVqyRJmzZt0pEjRyw7xF///v01btw4DRgwQD169FBCQoIOHTqk4uJi/fe//1VpaanX9jU1NZo1a5bi4uJ06623+nWsvLw8TZ48WadOnfJa365dO02cOFFjx45Vr169VF5ernfffVf/+Mc/dOLECc92TqdTd955p84++2xdd911gZ80AAAAAAAAAACIWiTD9E0yzK179+5NbtehQwevajBfkmGSlJ6e7kmG1dbWavv27ZowYUIQERvrggsu0NSpU3XTTTfp3HPPbXa7mpoaPfvss7rrrrt0/Phxr+/NmjVL48eP18CBA306ZmVlpW688cZGibBBgwbp5Zdf1uDBgxvt89hjj2natGlewyM6nU5NmzZN6enpOuuss3w6NgAAAAAAAAAAaDsYJrEJ8fHxTa5PSkryWv788899aq9hkmbPnj2BBWawSy+9VJs2bdLOnTt17733tpgIk6TY2FjNnDlTW7ZsaVTZ5nA4dPfdd/t87EcffVQHDhzwWte/f3/l5eU1mQiTpK5du2r16tW64YYbvNYfPXpUc+bM8fnYAAAAAAAAAACg7SAZpsZJroZVT81t13DIwOa4q8ncwyweOXLEzwiN1blzZ7355pt64403dMkll/i9/7Bhw7RkyZJG61977TV99dVXre5/5MiRRvOMtWvXTs8++6y6du3a4r4xMTF65plndOaZZ3qt/9vf/qZPPvnEh+gBAAAAAAAAAEBbQjJMjSu3jh071uR2/fr181ouKCjwqf19+/ZJ+iYp1q6duZf9jDPO0Lhx44Jq44YbbtCwYcO81p0+fVqvvfZaq/uuXLmy0TW+5pprNHbsWJ+O3a1bN917772Njp2Tk+PT/gAAAAAAAAAAoO0gGSbp/PPPl/RN5VZzwxi6kz/u7TZs2OBT+//73/+8lrt16xZQnFZz1VVXNVrnS3XW888/32jdbbfd5texp0yZog4dOnit+8c//uFXGwAAAAAAAAAAIPqRDJNrrqr6iZUPPvigye3GjBnj+bfT6dTmzZv1zjvvtNj2pk2b9NZbb3kSaJI0aNCgICO2ht69ezda98UXX7S4z9GjR5Wfn++1LjExUVdccYVfx+7evbvGjx/vtW7//v3N/t8BAAAAAAAAAIC2iWSYpPbt22v06NFyOp1yOp3avn17k9t961vf0siRIyW5qsOcTqcmT57c7NxhJSUluvHGG70SYfHx8Ro9erTxJ2GCEydONFoXHx/f4j75+fk6ffq017oxY8YoJibG7+NnZmY2Wpebm+t3OwAAAAAAAAAAIHqRDKtz6aWXev59+PDhZucDmzFjhmfuL5vNpo8//lhDhw7V7NmztWrVKr3++ut64YUXNH36dI0cOdJTKeV0OmWz2XTLLbeoffv2oT+hMNi9e3ejdWeffXaL+xQWFjZal56eHtDxMzIyfGofAAAAAAAAAAC0XSTD6lx77bWSvpkP7F//+leT282YMUMpKSle644dO6ZFixZp8uTJ+s53vqObbrpJy5Ytk8Ph8KoKS0pK0gMPPBCK8MOupqZGr7zySqP17sq55nz44YeN1vXv3z+gGPr169do3a5duwJqCwAAAAAAAAAARCeSYXUuuugiDRgwwDNU4rPPPqva2tpG29lsNq1cuVLdu3f3LLuHTGz4cifCnE6nYmJitGzZMvXq1Sus5xUq//73vxvND9a1a1eNHTu2xf327dvXaF2fPn0CiuHcc89tNLziJ598ElBbAAAAAAAAAAAgOsWaHYCVNEzwOBwO2e32RtsNHjxYr7/+un74wx96Kp3qV4DV53Q61aVLF61cuVJXXXVVaAIPs+rq6iYr3KZNm6bY2Ja7VMMEmqSAE4QxMTE6++yzVVZW5ln35ZdfBtRWUw4ePKjy8nK/9mlq6EhJqqysNCIkRIGGfYG+4Z9ov36RdH5Wi9WseMJ13FAeJxRtW61/wDroG8GJ9usXaednpXi5D1qrfSv1DVgP/SNw0X7tIu38rBSvmbFEw72Q+yDCqaqqyrRj25zuCbDgt5qaGj3zzDN6/vnnlZ+f36iSbODAgfrhD3+oX/7ylzrjjDNMitJ4v/zlL/Xkk096rTvjjDO0a9cuJScnt7hvt27ddOjQIa91Bw8ebHW/5gwePLjR0IsVFRXq1KlTQO3V9/DDD+t3v/tdUG0sWLBAvXv3DjoWAAAAAAAAAAAi2YEDBzR79mzP8nvvvachQ4aE5dhUhgUhNjZWd9xxh+644w5VVlbqs88+01dffaWEhASdffbZASd4rOyll15qlAiTpMcff9yn823qSYD4+PiA42lq3xMnThiSDAMAAAAAAAAAAJGPZJhBEhISNGDAAA0YMMDsUEKmsLBQt9xyS6P1N9xwg37605/61MapU6carWtqKEpfNZUMczgcAbcHAAAAAAAAAACiC8kw+OSTTz7RxIkTdeLECa/1559/vp599tmg2m5uvrVA9zVq5M+srCxNmjTJr312796ta6+9ttH6UaNGKSEhwZC4ENkqKyu1bds2zzJ9wz/Rfv0i6fysFqtZ8YTruKE8Tijatlr/gHXQN4IT7dcv0s7PSvFyH7RW+1bqG7Ae+kfgov3aRdr5WSleM2OJhnsh90GEU1FRkWnHJhmGVn366ae6/PLL9cUXX3it79Wrl9auXavExESf22rfvr1Onjzpta6qqirgYQ2bmnAvLi4uoLYa6tGjh3r06GFIWwkJCUpKSjKkLUQX+kZwov36RdL5WS1Ws+IJ13FDeZxQtG21/gHroG8EJ9qvX6Sdn5Xi5T5orfat1DdgPfSPwEX7tYu087NSvGbGEg33Qu6DCKVgpkwKVjvTjoyIcPDgQV1++eXau3ev1/qzzjpLGzZsUJ8+ffxqr2PHjo3WNZXQ8lVT+/KkAQAAAAAAAAAAcCMZhmZ9/fXXuuyyy/Thhx96re/evbs2bNiggQMH+t1mt27dGq07fvx4wDE23DcuLi7gKjMAAAAAAAAAABB9SIahSYcPH9aECRP03nvvea3v2rWrNmzYoCFDhgTU7plnntloXVlZWUBtnT59Wp9//nmr7QMAAAAAAAAAgLaLOcNa4XA4tGPHDu3atUtHjx7V0aNHderUqaDafOihhwyKLjSOHj2qCRMm6J133vFa36VLF61bt04XXXRRwG337dtXW7Zs8Vq3f/9+ZWZm+t3WZ599ppqamkbtAwAAAAAAAAAAuJEMa0Jtba3++c9/asmSJdq0aVOjhEuwrJwMO3bsmL7zne+osLDQa31SUpL+97//acSIEUG1P2jQoEbrdu/eHVBbe/bsabTu/PPPD6gtAAAAAAAAAAAQnUiGNbBjxw5NmzZNxcXFkiSn02lo+zabzdD2jFRRUaErrrhC27Zt81qfmJio//3vfxo1alTQx2gqmZafnx9QW3l5eY3WpaamBtQWAAAAAAAAAACITiTD6nn77bc1YcIEVVZWepJgRiavjE6sGen48eO68sortXXrVq/1nTp10muvvaYxY8YYcpz09HTFxMTo9OnTnnX5+fk6ffq0YmJi/Gpr8+bNjdZdcsklQccIAAAAAAAAAACiRzuzA7CKQ4cOaeLEiTp+/LgkVxLMZrPJ6XQa9rKqyspKXX311Y0qrRISEvTf//5XF198sWHH6tKlS6PEWkVFhdatW+dXO4cOHdLGjRu91vXu3VuDBw8OOkYAAAAAAAAAABA9SIbV+cMf/qCvv/7aqxLM6XRq1KhRWrBggbZu3ary8nI5HA7V1tYG/KpfEWUFJ06c0MSJE5Wbm+u1vmPHjnr11VeVmZlp+DEnT57caN0zzzzjVxvLly9XdXW117obb7wxqLgAAAAAAAAAAED0IRkmqba2VsuWLfMkwpxOpzp06KCVK1dq69atuvPOOzVq1Ch169ZNsbHRM7JkdXW1vv/97+vNN9/0Wh8fH681a9Zo3LhxITnuzTffrMTERK91//nPf5qcA6wphw4d0rx587zWxcTEaObMmYbFCAAAAAAAAAAAogPJMEnbtm3TkSNHJLkSYTabTStWrIjqSiOHw6Hrr79eGzZs8FofHx+v//znP7r00ktDduwuXbrojjvu8FpXW1uradOm6fDhwy3uW1tbq9tuu02ff/651/qbbrpJ/fr1MzxWAAAAAAAAAAAQ2UiGSfroo488/7bZbBo9erR+8IMfmBhRaNXU1OiHP/yhXnvtNa/1drtd//rXv3TZZZeFPIZf//rX6tmzp9e6jz76SBkZGfrwww+b3Ofw4cO6/vrrtWrVKq/1SUlJys7ODlmsAAAAAAAAAAAgckXPmH9BKC8vl/RNVdjEiRNNjii0XnjhBb3yyiuN1tvtdt1333267777Am47LS1NS5YsaXW7Tp066e9//7u+/e1vq6amxrP+ww8/1JAhQ/Td735XmZmZOvfcc/XVV1/p3Xff1T/+8Q9VVlY2amvp0qU655xzAo4ZAAAAAAAAAABEL5Jhkk6dOuW1fN5555kTSJg0PF+3I0eOeIaLDFSXLl183jYzM1N///vfddNNN3klxGpra/XKK680mbCrz2az6cknn4zqKj4AAAAAAAAAABAchkmU1L17d6/ldu24LOEyadIkvf766+rVq5df+3Xr1k0vvfSSZs+eHaLIAAAAAAAAAABANCDrI+mCCy6Q5Ko0kqSDBw+aGU6bc8kll+jDDz/UvHnz1L9//xa3Pffcc/Wb3/xGH3/8sa677rowRQgAAAAAAAAAACIVwyRKGjVqlDp37qxjx45JkvLy8qK64mjq1KmaOnWq2WF46dixo+655x7dc889+uijj1RcXKzS0lKdOHFCdrtd55xzjoYNG6ahQ4eaHSoAAAAAAAAAAIggJMMkxcbGasqUKVqwYIEkad26dTp27JiSkpJMjqxtGjhwoAYOHGh2GAAAAAAAAAAAIAowTGKdBx54QF26dJHNZtPRo0f1//7f/zM7JAAAAAAAAAAAAASJZFidM888Uzk5OZ7lJ554Qn//+99NjAgAAAAAAAAAAADBIhlWzw033KBFixbJZrOptrZWt9xyi+677z4dP37c7NAAAAAAAAAAAAAQgKieM+zAgQN+73P11Vdr4cKFuuuuu1RdXa0nnnhCOTk5+uEPf6hx48ZpwIAB6tq1q9q3bx9wXL179w54XwAAAAAAAAAAAPguqpNh5513nmw2W8D722w2OZ1OHT16VEuWLNGSJUuCjslms6mmpibodhBZKisrzQ4BFtGwL9A3/BPt1y+Szs9qsZoVT7iOG8rjhKJtq/UPWAd9IzjRfv0i7fysFC/3QWu1b6W+AeuhfwQu2q9dpJ2fleI1M5ZouBdyH0Q4VVVVmXZsm9PpdJp29BBr1y64USDrJ9KMukw2m02nT582pC2YZ9myZVq2bFmj9ZWVlSooKPAsL1iwgEpAAAAAAAAAAECbd+DAAc2ePduz/N5772nIkCFhOXZUV4ZJCqoyzOh2ojjv2Obs27dPmzZtMjsMAAAAAAAAAADQiqhPhpGAQiicd955GjduXKP1DSvDAACINPbycslmU3X37maHAgAAAAAAYIioToY9++yzZoeAKDV16lRNnTq10fqdO3fqwgsvbLR+1KhRSkhICENksLrKykpt27bNs0zf8E+0X79IOj+rxWpWPOE6biiP07DtsZs3q31cnKoff9ywNs3uH7AO+kZwov36Rdr5WSle7oPWat9KfQPWQ/8IXLRfu0g7PyvFa2Ys0XAv5D6IcCoqKjLt2FGdDJsyZYrZIQCSpISEBCUlJZkdBiyIvhGcaL9+kXR+VovVrHjCddxQHcdeXq6O//iHbJLiHnpI6tnTkHat1j9gHfSN4ET79Yu087NSvNwHrdW+lfoGrIf+Ebhov3aRdn5WitfMWKLhXsh9EKEUHx9v2rHbmXZkAAAAWMrA1atlczgkh0PKzjY7HAAAAAAAAEOQDAMAAIDs5eXqvX79NytycqSyMvMCAgAAAAAAMAjJMAAAAGjg6tWKqan5ZgXVYQAAAAAAIEqQDAMAAGjjGlWFuVEdBgAAAAAAokCs2QGYrbq6Wjt37lR5ebmOHDmiLl26KDk5WRdccIGpk7kBAACES6OqMDd3ddjCheEPCgAAAAAAwCBtNhn20ksv6ZlnntHmzZt18uTJRt+Pi4vT2LFjdeutt2rSpEkmRAgAABB6trKypqvC3HJypDlzpJ49wxcUAAAAAACAgdrcMImfffaZLr74Yv3whz/U66+/rurqajmdzkavkydP6o033tDkyZOVnp6u0tJSs0MHAAAwXIf585uuCnNj7jAAAAAAABDh2lQybPfu3br44ou1detWT9LLZrM1+3Jv8/bbb2vs2LHavXu32acAAABgnNJStV+xovXtmDsMAAAAAABEsDaTDDt9+rRuvPFG7d+/X5I8Ca+W1N+mtLRUkydP1unTp0MeKwAAQFhkZ8vmcLS+HdVhAAAAAAAggrWZZNif//xnFRYWNkqAuau/OnbsqLPPPlsdO3b0rHNz7/POO+/oySefDGfYAAAAoVFaKi1Z4vv2VIcBAAAAAIAI1SaSYU6nUwsXLvRKhDmdTp155pn605/+pH379qmiokJlZWWqqKjQvn379MQTT+jMM8/0JMXcwyYuXLjQrNMAAAAwTna2q+LLV1SHAQAAAACACNUmkmEbN27Uvn37JMmT3Bo9erR27NihX/ziF+rdu7fX9r1799Yvf/lL7dixQ2PGjPGqEjtw4IA2btwYttgBAAAM529VmBvVYQAAAAAAIAK1iWRYbm6u13L37t31yiuvqHv37i3u1717d7388svq0aOH1/q33nrL8BgBAADCxt+qMDeqwwAAAAAAQARqE8mwwsJCSa6qMJvNpl/84heNElzNOfPMM/WLX/zCs2/99gAAACJOoFVhblSHAQAAAACACNMmkmEfffSR13xhkydP9mv/H/3oR55/O51OffTRR4bFBgAAEFaBVoW5UR0GAAAAAAAiTJtIhh09etTz7zPOOEN9+/b1a/++ffuqa9eunuUjR44YFRoAAED4BFsV5kZ1GAAAAAAAiCCxZgcQDvWTYa3NE9ac7t276/Dhw5KkY8eOGRIXAABAWCUnN0piVVRUaPPmzZ7lsWPHKjExsfW2fNkGAAAAAADAAtpEMqy6utozTGLHjh0DaiM+Pt7z75MnTxoSFwAAQFjZ7a5XPc4OHeTo3Pmb5e7dpaSkcEcGAAAAAAAQMm1imEQAAAAAAAAAAAC0TSTDAAAAAAAAAAAAELVIhgEAAAAAAAAAACBqkQwDAAAAAAAAAABA1Io1OwCgLaisrDQ7BFhEw75A3/BPtF+/SDo/q8VqVjzhOm4ojxOKtq3WP2Ad9I3gRPv1i7Tzs1K83Aet1b6V+gash/4RuGi/dpF2flaK18xYouFeyH0Q4VRVVWXasW1Op9Np2tHDpF27drLZbHI6nerUqZPS0tL8bmP79u06ceKEnE6nbDabxo0bF1AsNptNr7/+ekD7wjqWLVumZcuWNVpfWVmpgoICz/KCBQvUu3fvMEYGAAAAAAAAAID1HDhwQLNnz/Ysv/feexoyZEhYjt3mKsMqKyu1adOmgPZ15w2dTmdAbbgTaYh8+/btC7gfAQAAAAAAAACA8GlzyTCjCuH8bYckWHQ577zzmqwObFgZBgAAAAAAAAAAzNWmkmEkpGCUqVOnaurUqY3W79y5UxdeeGGj9aNGjVJCQkIYIoPVVVZWatu2bZ5l+oZ/ov36RdL5WS1Ws+IJ13FDeZxQtG21/gHroG8EJ9qvX6Sdn5Xi5T5orfat1DdgPfSPwEX7tYu087NSvGbGEg33Qu6DCKeioiLTjt1mkmFtYGo0WFhCQoKSkpLMDgMWRN8ITrRfv0g6P6vFalY84TpuKI8Tirat1j9gHfSN4ET79Yu087NSvNwHrdW+lfoGrIf+Ebhov3aRdn5WitfMWKLhXsh9EKEUHx9v2rHbRDJs7969ZocAAAAAAAAAAAAAE7SJZFifPn3MDgEAAAAAAAAAAAAmaGd2AAAAAAAAAAAAAECokAwDAAAAAAAAAABA1CIZBgAAAAAAAAAAgKhFMgwAAAAAAAAAAABRi2QYAAAAAAAAAAAAohbJMAAAAAAAAAAAAEQtkmEAAAAAAAAAAACIWiTDAAAAAAAAAAAAELVIhgEAAAAAAAAAACBqkQwDAAAAAAAAAABA1CIZBgAAAAAAAAAAgKhFMgwAAAAAAAAAAABRi2QYAAAAAAAAAAAAohbJMAAAAAAAAAAAAEQtkmEAAAAAAAAAAACIWiTDAAAAAAAAAAAAELVIhgEAAAAAAAAAACBqkQwDAAAAAAAAAABA1CIZBgAAAAAAAAAAgKhFMgwAAAAAAAAAAABRK9bsAIC2oLKy0uwQYBEN+wJ9wz/Rfv0i6fysFqtZ8YTruKE8Tijatlr/gHXQN4IT7dcv0s7PSvFyH7RW+1bqG7Ae+kfgov3aRdr5WSleM2OJhnsh90GEU1VVlWnHtjmdTqdpRwci1LJly7Rs2bJG6ysrK1VQUOBZXrBggXr37h3GyAAAAAAAAAAAsJ4DBw5o9uzZnuX33ntPQ4YMCcuxqQwDArBv3z5t2rTJ7DAAAAAAAAAAAEArSIYBATjvvPM0bty4RusbVoYBAAAAAAAAAABzkQwDAjB16lRNnTq10fqdO3fqwgsvbLR+1KhRSkhICENksLrKykpt27bNs0zf8E+0X79IOj+rxWpWPOE6biiPE4q2rdY/YB30jeBE+/WLtPOzUrzcB63VvpX6BqyH/hG4aL92kXZ+VorXzFii4V7IfRDhVFRUZNqxSYYBYZCQkKCkpCSzw4AF0TeCE+3XL5LOz2qxmhVPuI4byuOEom2r9Q9YB30jONF+/SLt/KwUL/dBa7Vvpb4B66F/BC7ar12knZ+V4jUzlmi4F3IfRCjFx8ebdux2ph0ZAAAAAAAAAAAACDGSYQAAAAAAAAAAAIhaJMMAAAAAAAAAAAAQtUiGAQAAAAAAAAAAIGqRDAMAAAAAAAAAAEDUIhkGAAAAAAAAAACAqEUyDAAAAAAAAAAAAFEr1uwAgIbKy8u1fft27dmzR8eOHVP79u3VrVs3XXDBBUpLS1P79u3NDhEAAAAAAAAAAEQIkmGwjH/+85/685//rC1btsjpdDa5TWJion74wx/qvvvu08CBA8McIQAAAAAAwP9v777joyrT/o9/hxRKIIA0AQmE0IJBIMWgEAwoCssCioCorAsssNZdC8IDooAF0dVVLOyyygOiIC5FUdZGCSWrCClIkSaSBAiBEMCEENN/f/hzHiZnQqYlM5n5vF+vvJxzzbnv+5rJkEu4cu4DAABqG7ZJhNudPHlS8fHxGj16tBITEytthElSXl6eFi9erB49eui555674rkAAAAAAAAAAAA0w+BWhw8fVkxMjLZu3WrXuKKiIj3zzDO69957VVpaWk3ZAQAAAAAAAACA2o5tEuE2OTk5GjRokE6dOmV4LioqSiNGjFBoaKgKCgp0+PBhrVixQpmZmRbnffjhh2rZsqVef/31GsoaAAAAAAAAAADUJjTD4DZTpkxRRkaGRaxRo0b64IMPNHz4cMP58+bN07x58zRnzhyL+IIFC3TbbbdpyJAh1ZkuAAAAAAAAAACohdgmEW6xYcMGrV271iIWGBiozZs3W22ESVJAQIBmz55t9Sqwv/zlLyopKamOVAEAAAAAAAAAQC1GMwxu8dxzzxlis2fPVnR0dJVj//rXv2rQoEEWsR9//FErVqxwWX4AAAAAAAAAAMA70AxDjdu/f7+2b99uEWvevLmmTp1q8xwvvviiIfaPf/zD6dwAAAAAAAAAAIB3oRmGGrdy5UpDbMKECQoMDLR5jqioKEVFRVnEduzYoWPHjjmdHwAAAAAAAAAA8B40w1DjvvzyS0Ns1KhRds9jbYy1uQEAAAAAAAAAgO+iGYYalZ+fr5SUFItYgwYNFBkZafdccXFxhljF7RcBAAAAAAAAAIBvoxmGGrV7926VlZVZxKKjo+Xv72/3XDExMQoICLCIJScnO5UfAAAAAAAAAADwLjTDUKMOHjxoiHXq1MmhuQIDA3XNNddYxI4ePaqSkhKH5gMAAAAAAAAAAN6HZhhqVFpamiHWvn17h+cLCQmxOC4tLVVGRobD8wEAAAAAAAAAAO9i/950gBOysrIMsXbt2jk8n7Wxp0+fVseOHR2e8zdnzpxRdna2XWN++OEHi+NTp05JklJSUlS/fn2nc0LtV1BQYNGw5bNhH29//2rT6/O0XN2VT02tW53rVMfcnvb5gOfgs+Ecb3//atvr86R8qYOeNb8nfTbgefh8OM7b37va9vo8KV935uINtZA6iJpU8d/PCwsLa2xtmmGoUefOnTPEGjZs6PB81sbm5OQ4PN/lFi5cqLlz5zo1x4svvuiSXAAAAAAAAAAA8CbHjx9XZGRkjazFNomoUfn5+YaYM78ZYG3spUuXHJ4PAAAAAAAAAAB4F5phqFHFxcWGWL169Ryez1ozrKioyOH5AAAAAAAAAACAd2GbRLidyWRy6djy8nJn0jF78MEHNXr0aLvG5ObmKikpSXl5eXrqqafM8U8++USdOnVySV6o/caPH6+kpCRFR0dr6dKl7k6n1vH29682vT5Py9Vd+dTUutW5jqvn/vHHH3X77bebj6mDuJyn/eyobbz9/attr8+T8qUOes781EFUxZN+dtQ23v7e1bbX50n5ujMXb6iF1EHUlMLCQt13333av3+/rr32Wt100001tjbNMNSogIAAQ6ygoMDh+ayNDQwMdHi+y7Vs2VItW7a0e9wNN9yg/fv3WzTDOnXqpGuvvdYleaH2CwoKMv+Xz4X9vP39q02vz9NydVc+NbVuda5T3a+BOojLedrPjtrG29+/2vb6PClf6qDnzk8dREWe9LOjtvH29662vT5PyteduXhDLaQOoiY1b97c/N8mTZrU2Lpsk4ga1aBBA0PM1c2w3354AwAAAAAAAAAA0AxDjWrWrJkhdvHiRYfnszbW2hoAAAAAAAAAAMA30QxDjWrVqpUhduLECYfnO378uE1rAAAAAAAAAAAA30QzDDUqNDTUEEtPT3d4voyMDItjPz8/hYSEODwfAAAAAAAAAADwLv7uTgC+pWvXrobYjz/+6NBcRUVFhivDwsLC5O/Pxxqebfz48YqPj1eHDh3cnUqt5O3vX216fZ6Wq7vyqal1q3MdT/tewrvxeXOOt79/te31eVK+1EHPnh+4HJ83x3n7e1fbXp8n5evOXLyhFnrS9xLez12fN1N5eXl5ja4In5afn6/g4GCVlZWZY0FBQbpw4YLdTaxvvvlGffv2tYiNHTtWH374oUtydcb+/fsVERFhPt63b5+uvfZaN2YEAEDNoQ4CAHwZdRAA4Muog/BUbJOIGhUUFKTevXtbxPLz85Wammr3XImJiYZY//79Hc4NAAAAAAAAAAB4H5phqHGDBw82xFavXm33PNbGWJsbAAAAAAAAAAD4LpphqHFjx441xJYsWaKioiKb50hNTdWuXbssYrGxsQoNDXU6PwAAAAAAAAAA4D1ohqHGRUREqF+/fhax7OxsvfbaazbPMWPGDEPsgQcecDo3AAAAAAAAAADgXWiGwS1mzZpliM2ePVspKSlVjn3rrbf01VdfWcQ6duyoe+65x2X5AQAAAAAAAAAA7+Dv7gTgm2677TaNGDFC69atM8cKCws1YMAAffDBBxo2bJhhTHFxsebPn69nnnnG8Nwbb7yhgICAas3ZHi1atNDs2bMtjgEA8BXUQQCAL6MOAgB8GXUQnspUXl5e7u4k4Juys7MVGRmpEydOGJ6Ljo7WiBEjFBoaqoKCAh05ckTLly/XyZMnDec+/PDDevPNN2siZQAAAAAAAAAAUMvQDINbHThwQAMHDlRWVpZD48eMGaMVK1bIz8/PxZkBAAAAAAAAAABvwD3D4Fbh4eHauXOn+vXrZ9e4gIAAzZ49Wx9++CGNMAAAAAAAAAAAUCmuDINHKC8v16pVq7RgwQJ9++23quxj2bBhQ40ePVrTpk1Tt27dajhLAAAAAAAAAABQ29AMg8c5c+aMdu7cqZ9++km5ubny9/dX8+bNFR4erpiYGAUGBro7RQAAAAAAAAAAUEvQDAMAAAAAAAAAAIDX4p5hAAAAAAAAAAAA8Fo0wwAAAAAAAAAAAOC1aIYBAAAAAAAAAADAa/m7OwEArrVz504tXbpUW7du1cmTJ1VaWqq2bdsqNjZW9913n26++WZ3pwgAgMtlZ2crKSlJu3btMv83KyvL/PySJUs0fvx49yUIAEA1unTpkrZv367NmzcrJSVFBw8e1NmzZyVJTZs2Vbdu3RQXF6fx48crNDTUzdkCAOA6RUVF2rVrl3bs2KHvv/9ehw4dUkZGhi5cuKCSkhI1btxY7dq1U0xMjEaPHq1bbrlFJpPJ3WnDDUzl5eXl7k4CgPMuXbqkJ554Qv/85z+veN7IkSP1zjvv6KqrrqqhzAAAqD5ZWVnq06eP0tPTr3gezTAAgDc6ffq0/vrXv2r9+vXKz8+v8vw6depo8uTJeuWVV9SwYcMayBAAgOo1efJkvfvuuzafHxUVpcWLF6tnz57VmBU8EVeGAV6gtLRUo0eP1ueff26ONWjQQN27d5e/v79++OEH5ebmSpLWrl2r9PR0bdu2TQ0aNHBXygAAuMQvv/xSZSMMAABvdfz4cX300UeGeIcOHdS6dWsFBgbq2LFjysjIkCSVlZVp0aJFSk5O1qZNmxQcHFzTKQMA4FIVr/Vp1KiROnbsqKZNm0qSTp06pSNHjqisrEySlJycrLi4OH355Ze68cYbazxfuA/3DAO8wNy5cy0aYVOmTNGJEye0a9cuffvtt8rMzNSsWbPMzycnJ+uBBx5wR6oAAFSbFi1aaPDgwZo1a5bWrVvn7nQAAKgxJpNJ8fHxeu+995SVlaVjx47pm2++0ZYtW5Senq5du3apT58+5vOTkpI0ZcoUN2YMAIBrBAUF6Y477tDixYt15MgR5ebmavfu3UpISFBCQoIOHjyoU6dOaebMmfLz85Mk5eXl6Z577rHpqmp4D7ZJBGq5U6dOqVOnTrp06ZIk6Q9/+IOWLVtm9dynn35azz//vKRf/7KUmprKJcEAgFotNzdXX3/9tWJiYtS+fXuL5y7fB55tEgEA3iglJUUvvPCC5s6dq4iIiCueW1RUpFtvvVVbt241x1JTU9WrV69qzhIAAM/w7rvvavLkyeZj/p7oW7gyDKjlFixYYG6ENWjQQK+//nql5z799NNq166dpF8vIX7ppZdqIkUAAKpNcHCwRo0aZWiEAQDgCyIjI7VmzZoqG2GSFBgYqEWLFlnE1q5dW12pAQDgcSZNmqSwsDDzcUJCghuzQU2jGQbUcpf/5WXMmDG66qqrKj03MDBQEyZMMB+vX79eRUVF1ZofAAAAAMAzdO3aVZ07dzYfHzhwwI3ZAABQ8yIjI82Ps7Ky3JgJapq/uxMAvF12drZ27dqlo0ePKjc3VwEBAWrWrJm6d++u6OhoBQQEODz34cOHdeTIEfPx4MGDqxwzZMgQPfvss5J+3R9369atGjRokMM5AABwJdVZBwEAqA08rRY2a9bM/PfI3NzcGl0bAOB7PK0OlpSUmB8HBwfX6NpwL5ph8Frnzp1TUlKS+Ss5OVkZGRmG86rrtnmrV6/WggUL9N///rfSNRo1aqQxY8Zo2rRp6tKli91rfP/99xbHN9xwQ5VjIiMjFRgYaL4i7Pvvv6cZBgBeyBfqIAAAV0IttC49Pd38uGXLljWyJgCg5lEHjYqLi/Xtt9+aj2+88cZqXxOew1ReXZ92oIbt27dP//nPf5ScnKykpCQdO3bMpnGu/iNw8uRJ3XvvvRY3Ja5KYGCgZs2apVmzZslkMtk87tlnn9Xs2bPNc/zyyy82je/UqZOOHj0qSZo4caIWL15s85oAAM/ki3WwKpfPxY2RAcD7UQurtmPHDotfonzrrbf00EMPVdt6AICaQx2s2rRp0/S3v/1NktS8eXMdOnToirecgXfhyjB4jXfffVcLFixwaw6HDx9WfHy8Tp06Zde4oqIiPfPMMzpw4IDef/99+fn52TQuLS3N/Piaa66xuViEhISYm2GXzwEAqL18sQ4CAHA5amHVXnzxRfPjevXqaeTIkdWyDgCg5lEHjUpKSpSdna3vvvtOCxcu1IYNGyRJ9evX14cffkgjzMfQDANcJCcnR4MGDbL6wz4qKkojRoxQaGioCgoKdPjwYa1YsUKZmZkW53344Ydq2bKlXn/9dZvWvHx/98aNG9uc6+X74ebl5dk8DgCAyrijDgIA4Ek8vRYuX75cn376qfn4kUceUevWrV2+DgDAN3lKHaxXr54KCwutPmcymXTrrbfq1Vdf1bXXXuvwGqidaIbB6wUGBioiIkLR0dH697//rQsXLlTLOlOmTDHsu9uoUSN98MEHGj58uOH8efPmad68eZozZ45FfMGCBbrttts0ZMiQKtfMz883P65Xr57NudavX9/8+OLFizaPAwDUPt5cBwEAsAW1UNq7d6/+/Oc/m4+7du1q3nIfAODdqIP/Jz4+Xg8//LC6d+/u8rnh+WiGwav4+/ure/fuio6ONn/17NlTgYGBkqSvvvqqWn7gb9iwQWvXrrWIBQYGavPmzYqOjrY6JiAgQLNnz1aTJk306KOPWjz3l7/8RQcOHJC//5X/iBYXF5sfV3Xu5S4/t6ioyOZxAADP5mt1EACAiqiFRidOnNDQoUPNv0xZv359rVy5UkFBQU7PDQDwLNRB6dZbbzX/e2dhYaGysrJ0+PBhlZWVKSEhQQkJCerTp49Wrlyp9u3b2z0/arFywEtkZmaWX7p06YrntG/fvlySxZcrxMXFGeZ94YUXbB4/aNAgw/j33nuvynHDhg0znx8TE2PzeqNGjTKP69mzp83jAACeyxfrYFUun2/JkiVOzwcA8GzUQqPs7Ozy8PBw85z+/v7ln376qdPzAgA8D3WwcmfPni1/8cUXyxs0aGCePyQkpPz06dMuWwOer46LemqA27Vu3dpi+7+asn//fm3fvt0i1rx5c02dOtXmOS6/ifFv/vGPf1Q5rmHDhubHBQUFNq936dIlq3MAAGovX6yDAABcjlpo6cKFC7r11lt14MABSVKdOnX0/vvva9iwYU7NCwDwTNTByjVr1kz/8z//o23btpn/LTQjI0NPPPGEy9aA56MZBjhp5cqVhtiECRPMlx/bIioqSlFRURaxHTt26NixY1cc17x5c/NjazenrExWVpb5cbNmzWweBwBARe6sgwAAeAJPrIV5eXkaPHiwUlNTJUkmk0mLFy/W2LFjHZoPAIDKeGIdvNI6M2fONB+vXLlS586dc+ka8Fw0wwAnffnll4bYqFGj7J7H2hhrc1+ua9eu5sc5OTkWV3xdyfHjx82Pu3XrZmOGAAAYubMOAgDgCTytFubn52vo0KH67rvvzLGFCxdq/Pjxds8FAEBVPK0OVmXMmDHmxyUlJUpKSnL5GvBMNMMAJ+Tn5yslJcUi1qBBA0VGRto9V1xcnCFW8RLjirp3725xvHv37irXOXnypLKzs83H4eHhtiUIAEAF7q6DAAC4m6fVwl9++UXDhw+3GPfaa6/p/vvvtzsfAACq4ml10Bbt2rWzOD579qzL14BnohkGOGH37t0qKyuziEVHR8vf39/uuWJiYhQQEGARS05OvuKY66+/XvXq1TMfJyYmVrlOxSLSv39/O7IEAOD/uLsOAgDgbp5UC4uKinTHHXdo8+bN5tj8+fP16KOP2p0LAAC28KQ6aKuff/7Z4rhJkyYuXwOeiWYY4ISDBw8aYp06dXJorsDAQF1zzTUWsaNHj6qkpKTSMUFBQbr55pvNx8uXL69yncvP6dGjhzp27OhAtgAAuL8OAgDgbp5SC0tKSnTXXXdZbCc1d+5cTZ8+3aFcAACwhafUQXtUvFAgLCzMpfPDc9EMA5yQlpZmiLVv397h+UJCQiyOS0tLlZGRccUxEyZMMD/es2ePPvvss0rPTUlJ0RdffGF1LAAA9vKEOggAgDt5Qi0sLS3VuHHj9Mknn5hjM2fO1DPPPONwHgAA2MIT6qA9ioqK9Pzzz5uPw8LC1LVrV5fND89GMwxwQlZWliFWcd9Ze1gbe/r06SuOGTlypMU+vH/+85+t/lZGZmam7r33XpWWlkqS2rZtqwceeMDhXAEA8IQ6CACAO7m7FpaXl2vSpEn66KOPzLGpU6fqhRdecDgHAABs5e46uHbtWj399NM6c+ZMlXNnZmZq2LBhSk1NNcdmzJjhWKKolezfvBOA2blz5wyxhg0bOjyftbE5OTlXHGMymfTuu++qX79+unTpkk6dOqXY2Fg9+OCDiouLk5+fn3bt2qW33nrLXDz8/Pz0zjvvWNxvDAAAe3lCHZSkyZMn6/3336/ynPvvv98QP3TokFO/uQgA8G3uroWrVq3S0qVLzceBgYHau3evBg8ebNN6rVq10nvvvWd3ngAASO6vg7m5uXr++ef14osvKi4uTn379lVERISaN2+u+vXrKy8vTz/99JO2b9+udevWqaCgwDz29ttv18SJEx3OFbUPzTDACfn5+YZY/fr1HZ7P2thLly5VOa53795auXKl7r77buXn5ys3N1fz58/X/PnzDef6+/vr7bff1pAhQxzOEwAAyXPqYHFxsQoLC694TklJidW95svLy21PEACACtxdCys+V1RUpK+++srm9fiFEACAM9xdB39TWlqqLVu2aMuWLVWeazKZNGnSJL399tsymUyOpIlaim0SAScUFxcbYs5cbWXtB35RUZFNY3+7zHfw4MGqU8f6H+0bb7xR33zzjaZMmeJwjgAA/MaT6iAAAO5ALQQA+DJ318G4uDj95S9/sem+X3Xr1tXo0aO1bds2/etf/1JAQIDDeaJ24sowwMWc+Y0Ca2Pt+Y31zp0764svvlBmZqYSExN18uRJlZaWqm3btrr++usVFhbmcG4AANjCHXVw6dKlFltEAQDgTjVZC8ePH6/x48c7vB4AAK5Wk3UwLCxMCxYskPTrlo179uzRTz/9pLNnz6qoqEgNGzZU06ZNFR4eruuuu45bxvg4mmGAE6z9BsHle8/ay9rYwMBAu+dp06aNxowZ43AeAADYwlPrIAAANYVaCADwZZ5UB6+66irFx8crPj7e4fXh3dgmEXBCgwYNDDFX/8APCgpyeD4AAKoTdRAA4OuohQAAX0YdRG1CMwxwQrNmzQyxixcvOjyftbHW1gAAwBNQBwEAvo5aCADwZdRB1CY0wwAntGrVyhA7ceKEw/MdP37cpjUAAPAE1EEAgK+jFgIAfBl1ELUJzTDACaGhoYZYenq6w/NlZGRYHPv5+SkkJMTh+QAAqE7UQQCAr6MWAgB8GXUQtQnNMMAJXbt2NcR+/PFHh+YqKioy/PZDWFiY/P39HZoPAIDqRh0EAPg6aiEAwJdRB1Gb0AwDnNC7d2/VqWP5xygpKUklJSV2z5WUlKTi4mKLWGRkpFP5AQBQnaiDAABfRy0EAPgy6iBqE5phgBOCgoLUu3dvi1h+fr5SU1PtnisxMdEQ69+/v8O5AQBQ3aiDAABfRy0EAPgy6iBqE5phgJMGDx5siK1evdrueayNsTY3AACehDoIAPB11EIAgC+jDqK2oBkGOGns2LGG2JIlS1RUVGTzHKmpqdq1a5dFLDY21upNKAEA8CTUQQCAr6MWAgB8GXUQtQXNMMBJERER6tevn0UsOztbr732ms1zzJgxwxB74IEHnM4NAIDqRh0EAPg6aiEAwJdRB1Fb0AwDXGDWrFmG2OzZs5WSklLl2LfeektfffWVRaxjx4665557XJYfAADViToIAPB11EIAgC+jDqI2oBkGuMBtt92mESNGWMQKCws1YMAAffbZZ1bHFBcX67nnntMjjzxieO6NN95QQEBAteQKAICrUQcBAL6OWggA8GXUQdQGpvLy8nJ3JwG4yu9+9ztlZmZW+vwPP/yg4uJii1jPnj2vOOfnn3+uNm3aVLl2dna2IiMjdeLECcNz0dHRGjFihEJDQ1VQUKAjR45o+fLlOnnypOHchx9+WG+++WaV6wEAUBF1EADg66iFAABfRh0EKkczDF6lQ4cOSk9Pd+mcx44dU4cOHWw698CBAxo4cKCysrIcWmvMmDFasWKF/Pz8HBoPAPBt1EEAgK+jFgIAfBl1EKgc2yQCLhQeHq6dO3cabhpZlYCAAM2ePVsffvghP+wBALUWdRAA4OuohQAAX0YdhCejGQa4WLt27bRt2zZ99NFHuvHGG2UymSo9t2HDhpowYYL27NmjOXPmqE4d/kgCAGo36iAAwNdRCwEAvow6CE/FNolANTtz5ox27typn376Sbm5ufL391fz5s0VHh6umJgYBQYGujtFAACqDXUQAODrqIUAAF9GHYSnoBkGAAAAAAAAAAAAr8V1hwAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAABcbs6cOTKZTBZfvqJDhw4Wr3v8+PFuy6W8vFxxcXHmXPz8/LRv3z635XO5vXv3ys/Pz5xb//793Z0SAAAAvBTNMAAAAAAAvNSyZcuUmJhoPp4wYYIiIiLcmNH/6dGjh8aNG2c+3r59uz744AM3ZgQAAABvRTMMAAAAAKxIS0szXNl0pa/69evr6quvVteuXTVs2DDNmTNHmzZtUllZmbtfCnzUzz//rOnTp5uP69evr2effdaNGRk999xzqlu3rvl42rRpysvLc2NGAAAA8EY0wwAAAADABX755RedPn1ahw8f1vr16zV37lzdcsstCgsL06uvvqqSkhJ3pwgf89JLL+n06dPm48mTJ6tNmzZuzMgoJCTEYhvJU6dO6dVXX3VfQgAAAPBKNMMAAAAAoBqlpaVp6tSp6tOnj44cOeLudOAjTp8+rTfeeMN8HBAQoKlTp7oxo8o9+eST8vPzMx///e9/V05OjhszAgAAgLehGQYAAAAANgoKClLPnj2tfnXu3FlNmzatdGxycrJuueUWnThxogYzhq+aN2+e8vPzzcfjxo1Tu3bt3JhR5cLCwjRq1CjzcV5enl566SU3ZgQAAABvYyovLy93dxIAAAAA4GnS0tIUGhpqEbvpppu0ZcuWK447evSoVq5cqddff11nz541PN+nTx99++23rkwVHqZDhw5KT083H//xj3/U0qVLa2z9nJwchYSE6NKlS+bYrl27FB0dXWM52Gvr1q2Kj483Hzdq1EgnTpxQcHCw+5ICAACA1+DKMAAAAABwobCwMD311FPau3evrr/+esPzO3bs0KpVq9yQGXzFP//5T4tGWGRkpEc3wqRfG81dunQxH+fl5emdd95xY0YAAADwJjTDAAAAAKAaXH311Vq/fr2uvvpqw3OLFi1yQ0bwBSUlJXrrrbcsYn/605/clI19Jk6caHH85ptvqqyszE3ZAAAAwJvQDAMAAACAatKiRQtNmzbNEE9MTLS4cgdwlS+++EJZWVnm4zp16ujOO+90Y0a2Gz16tMVxenq6EhIS3JQNAAAAvIm/uxMAAAAAAG82cuRIPf744xaxwsJC7d+/XzExMTbPU1paqpSUFKWnpys7O1vnz59XcHCwWrRooc6dO6t3794ymUyuTt9CUVGRkpKSdOjQIZ09e1aFhYVq1KiR+vTpo9jY2GpdW5IuXLignTt3KisrS9nZ2SotLVXLli3VsmVLxcTEqEWLFtWy7smTJ5WUlKTMzEydO3dOQUFBCg0NVUxMjNq0aVMtazpq2bJlFsf9+vVTq1atnJ63oKBA+/fv14EDB3T+/Hnl5eXJz89PDRo0UNOmTdW+fXuFhYWpbdu2Dq/RsWNH9e7dW6mpqebYsmXLdPPNNzudPwAAAHwbzTAAAAAAqEbt27dXUFCQ8vPzLeLZ2dk2jd+4caMWLVqkjRs36sKFC5We16xZMw0dOlQzZsxQt27d7Mpx6dKlmjBhgkXs2LFj6tChgyRp//79evnll7VmzRrD65CkP/7xj4Zm2Jw5czR37lyLWHl5uV15Sb9u+7dkyRItW7ZM3377rUpLS62eZzKZFBUVpbvvvlsPPfSQ6tata/daFX388cd67bXXlJiYaDV3k8mkG264QdOnT9fw4cOdXs9Z+fn5Wr9+vUXs97//vVNzfvzxx/rf//1fffXVVyouLq7y/DZt2qhv374aMWKEhg0bpuDgYLvWGzZsmEUzbO3atfrXv/7lku8nAAAAfBfbJAIAAABANWvcuLEhdqXGliTt3btXN998swYNGqTVq1dXeX5OTo6WLVumiIgI3X///SosLHQi4//z/PPPq1evXlq2bJnVRlh12rRpkyIiIjRlyhQlJiZW2giTfm20JSUl6YknnlCXLl308ccfO7zu2bNndfvtt2vkyJHavn17pU288vJyffPNNxoxYoTGjBnj9q0vN23apF9++cUiFh8f79BcGRkZuummmzRy5EitX7/epkaYJGVmZmrVqlUaN26c5s2bZ/e6AwYMsDi+ePGitm7davc8AAAAwOVohgEAAABANfv5558NsSZNmlR6/meffaYbbrhBmzdvtnut0tJSLVq0SPHx8Tpz5ozd4y/30EMP6emnn1ZJSYlT8zhiyZIlGjx4sA4dOmT32IyMDN15553629/+ZvfYnJwc3XzzzVq3bp1d41atWqUhQ4aoqKjI7jVd5YsvvrA4Dg4OVmRkpN3zpKWlqV+/ftq2bZurUrPZDTfcoHr16lnEKr4uAAAAwF5skwgAAAAA1Sg9Pd3qFVWV3d9qxYoV+sMf/qCysjKLeGBgoAYOHKjY2Fi1a9dOjRs31sWLF5WWlqZNmzYpMTHR4vwdO3Zo5MiRSkhIUEBAgN15v/POO1q4cKH5uGHDhho0aJD69u2rVq1aqby8XMePH1dCQoL8/Pzsnv9K3n//fU2cONEQ/21bwiFDhqhdu3by9/fXyZMntWHDBiUkJFhcOVZeXq5p06bJZDJp6tSpNq1bXFys2267TXv27DE817ZtW915550KDw/XVVddpdOnTys1NVWffPKJzp8/L0natm2bnnjiCQdftfMqXkHVq1cvh743EydO1PHjxw3xXr16KT4+Xl26dFGTJk0UEBCgvLw8nT9/XgcPHtSePXuUlJR0xSv4qlK3bl316NFDu3btMse2bNni8HwAAACARDMMAAAAAKrV2rVrDbHAwEB1797dEN+/f78mT55s0Qjz9/fXY489pieffLLSBtqcOXO0e/duTZo0ScnJyeb4f//7X82cOdOhK6Reeukl8+P7779fzz//vJo1a2Y4b+bMmYat+Zzx448/6sEHHzTEIyIitHjxYl1//fWG56ZNm6YDBw5o4sSJ2rFjhyG/+Ph4RUdHV7n2Cy+8YPH+Sb82Z+bOnaupU6dabSy9+eabeuqpp7RgwQJJ0ttvv63AwMAq13K1vLw8w1V01113nd3zJCYmKiEhwSLWsWNHLVu2TH379q1y/Pnz5/XFF19o0aJFMplMdq8vST179rRohu3bt08FBQWqX7++Q/MBAAAAbJMIAAAAANXk7Nmzevnllw3xfv36KSgoyCJWVlamsWPHWtx3KigoSF9//bVefvnlShthv+nVq5e++eYbDRo0yCL+xhtv6MSJE3bn/tvVPa+++qr+8Y9/WG2E/abitnbOePDBB3Xx4kWLWHR0tBITE602wn4THh6uhIQEDRw40CJeXFxs9Sqzio4ePWq4x5W/v79Wrlyp6dOnV3qFVVBQkF5//XX9/e9/l/TrFWmuul+bPVJSUgxXE0ZERNg9T8XtIQMCAvTVV1/Z1AiTpKZNm+qee+7R1q1b9fTTT9u9viT16NHD4rikpES7d+92aC4AAABAohkGAAAAANXi9OnTGj58uLKysgzPTZ482RBbs2aN9u3bZxFbsmSJBgwYYPOagYGBWrVqlZo3b26OFRUVmRs19rrzzjv1+OOPOzTWEfv27dOGDRssYsHBwfrkk0/UuHHjKsfXq1dPa9eu1dVXX20R37t3r77++usrjl24cKGKi4stYjNmzNDtt99uU+6PPfaY7r77bpvOrQ6HDx82xNq3b2/3PD/99JPFcXx8vDp16uRQTg0aNHBonLW8rb0+AAAAwFY0wwAAAADAhX766SfNnz9f1113nb799lvD8zExMbrrrrsM8cu3JZR+bUKMHj3a7vUbN26sv/71rxaxjz/+2O556tSpo1deecXucc546623DLFZs2apbdu2Ns/RuHFjzZ8/36a5f1NYWKilS5daxNq0aaMZM2bYvK7061V0devWtWuMq6SlpRli9rxvv8nLy7M4vtIVgdXlmmuuMcSsvT4AAADAVtwzDAAAAABslJSUpF69ell9rqCgQGfPntW5c+cqHd+2bVutWrXKcC+ltLQ0w72qJk2a5HCeQ4cOtdiiLi0tTenp6XZdKTRw4EB16NDB4RwcUfGqsLp16+pPf/qT3fOMHTtWjz/+uMX3IiEhQaWlpVa3O/zuu+8M37dx48bZfY+q1q1ba9iwYVq9erXdOTvL2laYFa+Qs0XF5td3332nkpIS+fvX3D8ftG7d2hA7fvx4ja0PAAAA78OVYQAAAABgo/z8fH3//fdWvw4fPnzFRlivXr20adMmqw2prVu3GmK23qPJmtDQUEMsNTXVrjns2Z7RFbKysgxb9A0YMEBXXXWV3XPVrVtXw4cPt4hdvHhR33//vdXzd+zYYYiNHDnS7nWdGees3NxcQ6zifelsERsba3F87NgxTZ482eJedtXN2vaKFa9YAwAAAOzBlWEAAAAAUI1CQkL00EMP6bHHHlNAQIDVc/773/8aYrbeq8pWZ8+etev8yMhIl65flZSUFEMsOjra4fliYmIMWx+mpKRYfV0Vr8rz9/dXz549HVo3KirKoXHOstasqlevnt3z3HXXXZo5c6YKCgrMsaVLl+rzzz/X+PHjNXLkSMXExKhOner73VprV+Tl5+dX23oAAADwfjTDAAAAAMAF6tatq+DgYDVp0kRdunRRVFSU+vfvrwEDBlTZOLC2xV1lVzE5Kicnx67zW7Zs6dL1q2KtWRceHu7wfN27d7dpDUk6c+aMxXFISIhDjSRJ6ty5s/z8/FRaWurQeEdVXM9kMjnUsGrdurXmzZunxx57zCJ+5swZvfzyy3r55ZfVpEkT3XjjjYqNjVWfPn104403qmHDhk7lfzlrWzKWlJS4bH4AAAD4HpphAAAAAGCjm266SVu2bHH5vPY2qhxx+ZU+tggODq6mTKw7f/68IdakSROH52vatKkhVtk2lhcuXLA4bty4scPrmkwmNWrUyDBndat4NVV5ebmKiooUGBho91yPPvqoSkpKNGPGDKtNqAsXLujzzz/X559/LunX5lWfPn101113aezYsWrevLljL+L/s/ZZtbZ1IgAAAGAr7hkGAAAAAG5mrRHkbtauzqlO1u4J5cg9r640trL7TlWMO7OuK8a7ak17G6CXmzp1qvbt26d77723yqvkSkpKlJiYqEceeUTt27fXk08+6dS2htbydsd7CgAAAO9BMwwAAAAA3MzaPZIKCgpUXl7usq85c+bU/AuzQ6NGjQwxZxoq1sZaW8Na3Nn7U7nj/lbWtrWs7Eo4W3Xt2lUffPCBsrKytHz5ck2aNEndunWTyWSqdMylS5f0yiuvKDIyUunp6Q6tay3vmt62EwAAAN6FZhgAAAAAuJm1beWcbWTUNta2NXRmq0FrY6+66iqr51bcjvHnn392eN3y8vJKr0CrTu3btzfErN2LzhGNGzfWPffco3feeUcHDhxQTk6O1q9fr+nTp6tHjx5Wxxw+fFhDhw5VUVGR3etZy9va6wMAAABsRTMMAAAAANysVatWhpijV9XUVi1atDDEDhw44PB8P/zwgyFW2b2sKl51lJGRoV9++cWhdY8cOaLS0lKHxjqjY8eOhpirmmEVNW3aVEOHDtX8+fO1Z88eHTp0SA888ID8/Pwsztu/f78WL15s9/wnT540xEJDQx3OFwAAAKAZBgAAAABuFhsba4ht27bNDZm4T2RkpCGWlJTk8Hy7du0yxKKioqyeWzFeUlKi77//3qF1k5OTHRrnrOuuu84QO3ToUI2s3aVLFy1cuFDLli0zPLdmzRq75zt48KAh1rNnT4dyAwAAACSaYQAAAADgdoMGDTLE1q5d64ZM3KdVq1aGq5sSEhIc2i6yqKhIn376qUWsYcOGVhtGktSnTx9D7OOPP7Z7Xcl937ewsDDDNpB79+6t0Rzuuece9erVyyK2Z88eu+ep2Ihs2bKlQkJCnEkNAAAAPo5mGAAAAAC4Wffu3dW5c2eL2M6dO7V582Y3ZeQet912m8VxYWGhlixZYvc8H330kXJycixiAwcONGzj95vY2FhDI+n999+3e6vErKwsffbZZ/Yl60IVrzB09Oo2Z3Tr1s3i2JH7r1VsoFm7chIAAACwB80wAAAAAPAATz31lCE2adIkh66Mqq0efPBBQ+y5557TqVOnbJ4jNzdX06dPN8QfeeSRSsfUrVtX48ePt4hlZmZq/vz5Nq8rSVOnTlVhYaFdY1zp1ltvtTg+evSoXe+dK1Rcz9q94K7k2LFjhnudVWySAgAAAPaiGQYAAAAAHmDcuHGGq2qOHTum3/3ud8rMzHRoztzcXL388sv64IMPXJFitYuIiDA0dH7++WfdcccdunjxYpXjCwsLNWrUKEND5rrrrtMtt9xyxbEPPPCAAgICLGIvvPCC1q9fb1Pub7zxhpYvX27TudXld7/7nSGWkJBg1xxPPPGEfvjhB4fWT0lJ0fbt2y1i9t7ry1q+1l4XAAAAYA+aYQAAAADgAfz8/LRq1So1atTIIv7dd9+pd+/eWrhwoU3b9pWUlGjjxo2aMmWKQkJCNH36dGVlZVVX2i63cOFCNWzY0CL23XffKS4uTikpKZWOO3jwoAYOHKgNGzZYxAMCArR48eIq1+3UqZNmzpxpESspKdGoUaP0yiuvqLS01Oq4S5cu6YknntCjjz4qSTKZTKpbt26V61WHLl26KDw83CK2ceNGu+ZYvHixrr32Wg0aNEjvvPOOzpw5Y9O49evXa8iQISorK7OIjxs3zq71K+bbo0cPhYaG2jUHAAAAUJG/uxMAAAAAAPwqIiJCy5cv18iRI1VSUmKOnzlzRg899JCeeuop3XTTTYqNjVXLli3VuHFj5efn68KFC8rIyFBycrJSU1OVm5vrxlfhnLCwMC1cuFD33XefRXz37t2KiYlR3759NXjwYLVr105+fn46efKkNm7cqM2bN1u8Z7+ZN2+eoqOjbVr7qaee0vr165WcnGyOFRYW6sknn9SCBQt05513Kjw8XE2bNlV2drZSU1P18ccfW2xl+dBDD+mzzz5Tenq6g++Ac8aNG2ex5eann36qkpIS+fvb99f/jRs3auPGjbr//vt17bXXqnfv3urevbuaNWumJk2aqLS0VOfOndOBAwe0YcMGHTx40DBHXFyc7rrrLpvXLCws1H/+8x+LWMXPAQAAAOAImmEAAAAA4EGGDRumTZs26a677jJc0XXhwgWtW7dO69atc1N2NeMPf/iDiouL9ec//9miwVVWVqbt27cbtuKzxmQyaf78+Zo6darN6wYEBOjLL7/UwIEDtXfvXovnTpw4oQULFlxxfFxcnF555RV99tlnNq/pauPGjdOsWbNUXl4uScrJydGWLVuq3CayMmVlZdq7d6/h/ahKRESEVq5cqTp1bN+QZsOGDRaNXD8/P9177712rQsAAABYwzaJAAAAAOBh+vfvr5SUFI0bN05+fn4Oz2MymTRgwADFxcW5MLuaMXHiRH3xxRfq0qWL3WPbtWun1atXa9q0aXaPbd68uTZv3qzhw4fbNW7kyJH68ssv3bZF4m9CQkI0dOhQi5g99zK7+uqrnVrfZDLpj3/8oxITE9WmTRu7xq5YscLiePjw4WrdurVT+QAAAAASzTAAAAAA8EitW7fW+++/ryNHjujRRx813AuqMo0aNdLvf/97vf766zp27Jg2b96s2NjYas62etxyyy3av3+/Fi1apL59+16xMWgymRQVFaVXX31Vhw8f1siRIx1et3nz5lq3bp3WrFmjfv36yWQyVXpubGys1qxZozVr1qhBgwYOr+lKjz/+uMXxv//9b/388882jT148KCSk5P13HPPadCgQQoODrZpXMuWLfXggw8qJSVFS5cuVePGje3KOScnR2vXrrWIVXwdAAAAgKNM5b/tnQAAAAAA8GinT59WSkqKzp49q5ycHF28eFFBQUEKDg5W27Zt1a1bN7Vv3/6KzZva7MKFC9qxY4dOnz6t7OxslZaWqkWLFmrVqpViYmLUsmXLaln35MmT2rlzpzIzM3X+/HkFBQWpQ4cOuv7669W2bdtqWdNZUVFRSklJMR+/+eabevjhh+2ep6ysTGlpaTp69KjS09OVm5urS5cuqW7dugoODlbr1q113XXXqUOHDk7l+9prr1k0v2JiYrRz506n5gQAAAB+QzMMAAAAAAAvs27dOt1+++3m486dO+vgwYN23cOrppSWlqpz5846duyYObZ+/XrDdo8AAACAozzv/4IBAAAAAIBTRowYYbE95pEjR7R69Wo3ZlS5lStXWjTC+vbtSyMMAAAALsWVYQAAAAAAeKGEhAQNHDjQfNyrVy+lpKR41Daa5eXl6tmzp/bu3WuObd26Vf3793djVgAAAPA2XBkGAAAAAIAXGjBggO68807z8e7du/XRRx+5MSOjFStWWDTCxowZQyMMAAAALseVYQAAAAAAeKnjx48rPDxc+fn5kqSOHTvqwIEDCgwMdHNmUlFRkbp162beIjEoKEgHDx7UNddc4+bMAAAA4G383Z0AAAAAAACoHu3atdPy5cuVmppqjqWlpalLly5uzOr/8rjvvvvMx71796YRBgAAgGrBlWEAAAAAAAAAAADwWtwzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDXohkGAAAAAAAAAAAAr0UzDAAAAAAAAAAAAF6LZhgAAAAAAAAAAAC8Fs0wAAAAAAAAAAAAeC2aYQAAAAAAAAAAAPBaNMMAAAAAAAAAAADgtWiGAQAAAAAAAAAAwGvRDAMAAAAAAAAAAIDX+n8wPUovAj5mjAAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"compare_two_z_files(\n",
" z_file_path,\n",
" archived_z_file,\n",
" angle1=+13.2,\n",
" label1=\"aurora\",\n",
" label2=\"emtf\",\n",
" scale_factor1=1,\n",
" out_file=f\"{tf_file_base}compare.png\",\n",
" markersize=3,\n",
" rho_ylims=[1e0, 1e3],\n",
" xlims=[0.99, 2000],\n",
" rho_ax_label_size=12,\n",
" phi_ax_label_size=12\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dca59e0a-69cf-453c-8c8b-461750c25deb",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "5fe72445-8acd-4fb0-8df6-6cce87b068f5",
"metadata": {},
"source": [
"# Part II: Logic to save FCs\n",
"\n",
"Storage of FCs was intended to be an option to provide to users on the fly, by setting the decimation_level\n",
"part of the processing config to `dec_level.save_fcs = True` and `dec_level.save_fcs_type = \"h5\"`.\n",
"\n",
"This works in some cases but not in general. Details are in aurora issue #319 https://github.com/simpeg/aurora/issues/319. \n",
"\n",
"The proposed solution is to generate FCs per station by processing as a single station.\n",
"\n",
"We start with the Run Summary table:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "729d27e8-61c3-4946-817b-fbee4217eb0d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m24:09:03T20:09:42 | INFO | line:771 |mth5.mth5 | close_mth5 | Flushing and closing 8P_CAS04_NVR08.h5\u001b[0m\n"
]
},
{
"data": {
"text/html": [
"