Source code for aurora.transfer_function.emtf_z_file_helpers

"""

This module contains methods associated with legacy EMTF z-file TF format.

Development notes:
They extract info needed to setup emtf_z files.
These methods can possibly be moved under mt_metadata, or deprecated.

"""
import pathlib

import numpy as np
from aurora.transfer_function.transfer_function_collection import (
    TransferFunctionCollection,
)
from aurora.sandbox.io_helpers.zfile_murphy import ZFile
from loguru import logger
from typing import Optional, Union

EMTF_CHANNEL_ORDER = ["hx", "hy", "hz", "ex", "ey"]


[docs]def get_default_orientation_block(n_ch: int = 5) -> list: """ creates a text block like the part of the z-file that holds channel orientations. Helper function used when working with matlab structs which do not have enough info to make headers Parameters ---------- n_ch: int number of channels at the station Returns ------- orientation_strs: list List of text strings, one per channel """ orientation_strs = [] orientation_strs.append(" 1 0.00 0.00 tes Hx\n") orientation_strs.append(" 2 90.00 0.00 tes Hy\n") if n_ch == 5: orientation_strs.append(" 3 0.00 0.00 tes Hz\n") orientation_strs.append(" 4 0.00 0.00 tes Ex\n") orientation_strs.append(" 5 90.00 0.00 tes Ey\n") return orientation_strs
[docs]def merge_tf_collection_to_match_z_file( aux_data: ZFile, tf_collection: TransferFunctionCollection ) -> dict: """ method to merge tf data from a tf_collection with a Z-file when there are potentially multiple estimates of TF at the same periods for different decimation levels. Development Notes: Currently this is only used for the the synthetic test where aurora results are compared against a stored legacy Z-file. Given data from a z_file, and a tf_collection, the tf_collection may have several TF estimates at the same frequency from multiple decimation levels. This tries to make a single array as a function of period for all rho and phi. Parameters ---------- aux_data: aurora.sandbox.io_helpers.zfile_murphy.ZFile Object representing a z-file tf_collection: aurora.transfer_function.transfer_function_collection .TransferFunctionCollection Object representing the transfer function returned from the aurora processing Returns ------- result: dict of dicts Keyed by ["rho", "phi"], below each of these is an ["xy", "yx",] entry. The lowest level entries are numpy arrays. """ rxy = np.full(len(aux_data.decimation_levels), np.nan) ryx = np.full(len(aux_data.decimation_levels), np.nan) pxy = np.full(len(aux_data.decimation_levels), np.nan) pyx = np.full(len(aux_data.decimation_levels), np.nan) dec_levels = list(set(aux_data.decimation_levels)) dec_levels = [int(x) for x in dec_levels] dec_levels.sort() for dec_level in dec_levels: aurora_tf = tf_collection.tf_dict[dec_level - 1] indices = np.where(aux_data.decimation_levels == dec_level)[0] for ndx in indices: period = aux_data.periods[ndx] # find the nearest period in aurora_tf aurora_ndx = np.argmin(np.abs(aurora_tf.periods - period)) rxy[ndx] = aurora_tf.rho[aurora_ndx, 0] ryx[ndx] = aurora_tf.rho[aurora_ndx, 1] pxy[ndx] = aurora_tf.phi[aurora_ndx, 0] pyx[ndx] = aurora_tf.phi[aurora_ndx, 1] result = {} result["rho"] = {} result["phi"] = {} result["rho"]["xy"] = rxy result["phi"]["xy"] = pxy result["rho"]["yx"] = ryx result["phi"]["yx"] = pyx return result
[docs]def clip_bands_from_z_file( z_path: Union[str, pathlib.Path], n_bands_clip: int, output_z_path: Optional[Union[str, pathlib.Path, None]] = None, n_sensors: Optional[int] = 5, ): """ This function clips periods off the end of an EMTF legacy z_file. Development Notes: It can come in handy for manipulating matlab results of synthetic data. Parameters ---------- z_path: Path or str path to the z_file to read in and clip periods from n_periods_clip: integer how many periods to clip from the end of the zfile overwrite: bool whether to overwrite the zfile or rename it n_sensors Returns ------- """ if not output_z_path: output_z_path = z_path if n_sensors == 5: n_lines_per_period = 13 elif n_sensors == 4: n_lines_per_period = 11 logger.info("WARNING n_sensors==4 NOT TESTED") f = open(z_path, "r") lines = f.readlines() f.close() for i in range(n_bands_clip): lines = lines[:-n_lines_per_period] n_bands_str = lines[5].split()[-1] n_bands = int(n_bands_str) new_n_bands = n_bands - n_bands_clip new_n_bands_str = str(new_n_bands) lines[5] = lines[5].replace(n_bands_str, new_n_bands_str) f = open(output_z_path, "w") f.writelines(lines) f.close()