Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Joint PGI of Gravity + Magnetic on an Octree mesh using full petrophysical information

University of British Columbia
%matplotlib inline

This tutorial shows through a joint inversion of Gravity and Magnetic data on an Octree mesh how to use the PGI framework introduced in Astic & Oldenburg (2019) and Astic et al. (2021) to include petrophysical information into geophysical inversions for mutli-physics inversion.

Thibaut Astic, Douglas W. Oldenburg, A framework for petrophysically and geologically guided geophysical inversion using a dynamic Gaussian mixture model prior, Geophysical Journal International, Volume 219, Issue 3, December 2019, Pages 1989–2012, DOI: 10.1093/gji/ggz389 <https://doi.org/10.1093/gji/ggz389>_.

Thibaut Astic, Lindsey J. Heagy, Douglas W Oldenburg, Petrophysically and geologically guided multi-physics inversion using a dynamic Gaussian mixture model, Geophysical Journal International, Volume 224, Issue 1, January 2021, Pages 40-68, DOI: 10.1093/gji/ggaa378 <https://doi.org/10.1093/gji/ggaa378>_.

Import modules

from discretize import TreeMesh
from discretize.utils import active_from_xyz
import matplotlib.pyplot as plt
import numpy as np
import simpeg.potential_fields as pf
from simpeg import (
    data_misfit,
    directives,
    inverse_problem,
    inversion,
    maps,
    optimization,
    regularization,
    utils,
)
from simpeg.utils import io_utils

Setup

# Load Mesh
mesh_file = io_utils.download(
    "https://storage.googleapis.com/simpeg/pgi_tutorial_assets/mesh_tutorial.ubc"
)
mesh = TreeMesh.read_UBC(mesh_file)

# Load True geological model for comparison with inversion result
true_geology_file = io_utils.download(
    "https://storage.googleapis.com/simpeg/pgi_tutorial_assets/geology_true.mod"
)
true_geology = mesh.read_model_UBC(true_geology_file)

# Plot true geology model
fig, ax = plt.subplots(1, 4, figsize=(20, 4))
ticksize, labelsize = 14, 16
for _, axx in enumerate(ax):
    axx.set_aspect(1)
    axx.tick_params(labelsize=ticksize)
mesh.plot_slice(
    true_geology,
    normal="X",
    ax=ax[0],
    ind=-17,
    clim=[0, 2],
    pcolor_opts={"cmap": "inferno_r"},
    grid=True,
)
mesh.plot_slice(
    true_geology,
    normal="Y",
    ax=ax[1],
    clim=[0, 2],
    pcolor_opts={"cmap": "inferno_r"},
    grid=True,
)
geoplot = mesh.plot_slice(
    true_geology,
    normal="Z",
    ax=ax[2],
    clim=[0, 2],
    ind=-10,
    pcolor_opts={"cmap": "inferno_r"},
    grid=True,
)
geocb = plt.colorbar(geoplot[0], cax=ax[3], ticks=[0, 1, 2])
geocb.set_label(
    "True geology model\n(classification/density/mag. susc.)", fontsize=labelsize
)
geocb.set_ticklabels(
    ["BCKGRD (0 g/cc; 0 SI)", "PK (-0.8 g/cc; 5e-3 SI)", "VK (-0.2 g/cc; 2e-2 SI)"]
)
geocb.ax.tick_params(labelsize=ticksize)
ax[3].set_aspect(10)
plt.show()

# Load geophysical data
data_grav_file = io_utils.download(
    "https://storage.googleapis.com/simpeg/pgi_tutorial_assets/gravity_data.obs"
)
data_grav = io_utils.read_grav3d_ubc(data_grav_file)
data_mag_file = io_utils.download(
    "https://storage.googleapis.com/simpeg/pgi_tutorial_assets/magnetic_data.obs"
)
data_mag = io_utils.read_mag3d_ubc(data_mag_file)

# plot data and mesh
fig, ax = plt.subplots(2, 2, figsize=(15, 10))
ax = ax.reshape(-1)
plt.gca().set_aspect("equal")
plt.gca().set_xlim(
    [
        data_mag.survey.receiver_locations[:, 0].min(),
        data_mag.survey.receiver_locations[:, 0].max(),
    ],
)
plt.gca().set_ylim(
    [
        data_mag.survey.receiver_locations[:, 1].min(),
        data_mag.survey.receiver_locations[:, 1].max(),
    ],
)
mesh.plot_slice(
    np.ones(mesh.nC),
    normal="Z",
    ind=int(-10),
    grid=True,
    pcolor_opts={"cmap": "Greys"},
    ax=ax[0],
)
mm = utils.plot2Ddata(
    data_grav.survey.receiver_locations,
    -data_grav.dobs,
    ax=ax[0],
    level=True,
    nx=20,
    ny=20,
    dataloc=True,
    ncontour=12,
    shade=True,
    contourOpts={"cmap": "Blues_r", "alpha": 0.8},
    levelOpts={"colors": "k", "linewidths": 0.5, "linestyles": "dashed"},
)
ax[0].set_aspect(1)
ax[0].set_title(
    "Gravity data values and locations,\nwith mesh and geology overlays", fontsize=16
)
plt.colorbar(mm[0], cax=ax[2], orientation="horizontal")
ax[2].set_aspect(0.05)
ax[2].set_title("mGal", fontsize=16)
mesh.plot_slice(
    np.ones(mesh.nC),
    normal="Z",
    ind=int(-10),
    grid=True,
    pcolor_opts={"cmap": "Greys"},
    ax=ax[1],
)
mm = utils.plot2Ddata(
    data_mag.survey.receiver_locations,
    data_mag.dobs,
    ax=ax[1],
    level=True,
    nx=20,
    ny=20,
    dataloc=True,
    ncontour=11,
    shade=True,
    contourOpts={"cmap": "Reds", "alpha": 0.8},
    levelOpts={"colors": "k", "linewidths": 0.5, "linestyles": "dashed"},
)
ax[1].set_aspect(1)
ax[1].set_title(
    "Magnetic data values and locations,\nwith mesh and geology overlays", fontsize=16
)
plt.colorbar(mm[0], cax=ax[3], orientation="horizontal")
ax[3].set_aspect(0.05)
ax[3].set_title("nT", fontsize=16)
# overlay true geology model for comparison
indz = -9
indslicezplot = mesh.gridCC[:, 2] == mesh.cell_centers_z[indz]
for i in range(2):
    utils.plot2Ddata(
        mesh.gridCC[indslicezplot][:, [0, 1]],
        true_geology[indslicezplot],
        nx=200,
        ny=200,
        contourOpts={"alpha": 0},
        clim=[0, 2],
        ax=ax[i],
        level=True,
        ncontour=2,
        levelOpts={"colors": "k", "linewidths": 2, "linestyles": "--"},
        method="nearest",
    )
plt.subplots_adjust(hspace=-0.25, wspace=0.1)
plt.show()

# Load Topo
topo_file = io_utils.download(
    "https://storage.googleapis.com/simpeg/pgi_tutorial_assets/CDED_Lake_warp.xyz"
)
topo = np.genfromtxt(topo_file, skip_header=1)
# find the active cells
actv = active_from_xyz(mesh, topo, "CC")
# Create active map to go from reduce set to full
ndv = np.nan
actvMap = maps.InjectActiveCells(mesh, actv, ndv)
nactv = int(actv.sum())

# Create simulations and data misfits
# Wires mapping
wires = maps.Wires(("den", actvMap.nP), ("sus", actvMap.nP))
gravmap = actvMap * wires.den
magmap = actvMap * wires.sus
idenMap = maps.IdentityMap(nP=nactv)
# Grav problem
simulation_grav = pf.gravity.simulation.Simulation3DIntegral(
    survey=data_grav.survey,
    mesh=mesh,
    rhoMap=wires.den,
    active_cells=actv,
    engine="choclo",
)
dmis_grav = data_misfit.L2DataMisfit(data=data_grav, simulation=simulation_grav)
# Mag problem
simulation_mag = pf.magnetics.simulation.Simulation3DIntegral(
    survey=data_mag.survey,
    mesh=mesh,
    chiMap=wires.sus,
    active_cells=actv,
    engine="choclo",
)
dmis_mag = data_misfit.L2DataMisfit(data=data_mag, simulation=simulation_mag)
file already exists, new file is called /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/mesh_tutorial.ubc
Downloading https://storage.googleapis.com/simpeg/pgi_tutorial_assets/mesh_tutorial.ubc
   saved to: /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/mesh_tutorial.ubc
Download completed!
file already exists, new file is called /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/geology_true.mod
Downloading https://storage.googleapis.com/simpeg/pgi_tutorial_assets/geology_true.mod
   saved to: /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/geology_true.mod
Download completed!
<Figure size 2000x400 with 4 Axes>
file already exists, new file is called /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/gravity_data.obs
Downloading https://storage.googleapis.com/simpeg/pgi_tutorial_assets/gravity_data.obs
   saved to: /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/gravity_data.obs
Download completed!
file already exists, new file is called /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/magnetic_data.obs
Downloading https://storage.googleapis.com/simpeg/pgi_tutorial_assets/magnetic_data.obs
   saved to: /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/magnetic_data.obs
Download completed!
<Figure size 1500x1000 with 4 Axes>
file already exists, new file is called /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/CDED_Lake_warp.xyz
Downloading https://storage.googleapis.com/simpeg/pgi_tutorial_assets/CDED_Lake_warp.xyz
   saved to: /home/ssoler/git/user-tutorials/notebooks/12-pgi-inversion/CDED_Lake_warp.xyz
Download completed!

Create a joint Data Misfit

# Joint data misfit
dmis = 0.5 * dmis_grav + 0.5 * dmis_mag

# initial model
m0 = np.r_[-1e-4 * np.ones(actvMap.nP), 1e-4 * np.ones(actvMap.nP)]

Inversion with full petrophysical information

Create and plot a petrophysical GMM with full information

The GMM is our representation of the petrophysical and geological information. Here, we focus on the petrophysical aspect, with the means and covariances of the physical properties of each rock unit. To generate the data above, the PK unit was populated with a density contrast of -0.8 g/cc and a magnetic susceptibility of 0.005 SI. The properties of the HK unit were set at -0.2 g/cc and 0.02 SI. The covariances matrices are set so that we assume petrophysical noise levels of around 0.05 g/cc and 0.001 SI for both unit. Finally the background unit is set at null contrasts (0 g/cc 0 SI) with a petrophysical noise level of half of the above.

gmmref = utils.WeightedGaussianMixture(
    n_components=3,  # number of rock units: bckgrd, PK, HK
    mesh=mesh,  # inversion mesh
    actv=actv,  # actv cells
    covariance_type="diag",  # diagonal covariances
)
# required: initialization with fit
# fake random samples, size of the mesh, number of physical properties: 2 (density and mag.susc)
rng = np.random.default_rng(seed=518936)
gmmref.fit(rng.normal(size=(nactv, 2)))
# set parameters manually
# set phys. prop means for each unit
gmmref.means_ = np.c_[
    [0.0, 0.0],  # BCKGRD density contrast and mag. susc
    [-0.8, 0.005],  # PK
    [-0.2, 0.02],  # HK
].T
# set phys. prop covariances for each unit
gmmref.covariances_ = np.array(
    [[6e-04, 3.175e-07], [2.4e-03, 1.5e-06], [2.4e-03, 1.5e-06]]
)
# important after setting cov. manually: compute precision matrices and cholesky
gmmref.compute_clusters_precisions()
# set global proportions; low-impact as long as not 0 or 1 (total=1)
gmmref.weights_ = np.r_[0.9, 0.075, 0.025]

# Plot the 2D GMM
ax = gmmref.plot_pdf(flag2d=True)
ax[0].set_xlabel("Density contrast [g/cc]")
ax[0].set_ylim([0, 5])
ax[2].set_ylabel("magnetic Susceptibility [SI]")
ax[2].set_xlim([0, 100])
plt.show()
<Figure size 1000x1000 with 4 Axes>

Create PGI regularization

# Sensitivity weighting
wr_grav = np.sum(simulation_grav.G**2.0, axis=0) ** 0.5 / (mesh.cell_volumes[actv])
wr_grav = wr_grav / np.max(wr_grav)

wr_mag = np.sum(simulation_mag.G**2.0, axis=0) ** 0.5 / (mesh.cell_volumes[actv])
wr_mag = wr_mag / np.max(wr_mag)

# create joint PGI regularization with smoothness
reg = regularization.PGI(
    gmmref=gmmref,
    mesh=mesh,
    wiresmap=wires,
    maplist=[idenMap, idenMap],
    active_cells=actv,
    alpha_pgi=1.0,
    alpha_x=1.0,
    alpha_y=1.0,
    alpha_z=1.0,
    alpha_xx=0.0,
    alpha_yy=0.0,
    alpha_zz=0.0,
    # use the classification of the initial model (here, all background unit)
    # as initial reference model
    reference_model=utils.mkvc(
        gmmref.means_[gmmref.predict(m0.reshape(actvMap.nP, -1))]
    ),
    weights_list=[wr_grav, wr_mag],  # weights each phys. prop. by correct sensW
)

Inverse problem with full petrophysical information

# Directives
# Add directives to the inversion
# ratio to use for each phys prop. smoothness in each direction;
# roughly the ratio of the order of magnitude of each phys. prop.
alpha0_ratio = np.r_[
    1e-4 * np.ones(len(reg.objfcts[1].objfcts[1:])),
    1e-4 * 100.0 * np.ones(len(reg.objfcts[2].objfcts[1:])),
]
Alphas = directives.AlphasSmoothEstimate_ByEig(alpha0_ratio=alpha0_ratio, verbose=True)
# initialize beta and beta/alpha_pgi schedule
beta = directives.BetaEstimate_ByEig(beta0_ratio=1e-2)
betaIt = directives.PGI_BetaAlphaSchedule(
    verbose=True,
    coolingFactor=2.0,
    tolerance=0.2,
    progress=0.2,
)
# geophy. and petro. target misfits
targets = directives.MultiTargetMisfits(
    verbose=True,
)
# add learned mref in smooth once stable
MrefInSmooth = directives.PGI_AddMrefInSmooth(
    wait_till_stable=True,
    verbose=True,
)
# update the parameters in smallness (L2-approx of PGI)
update_smallness = directives.PGI_UpdateParameters(
    update_gmm=False  # keep GMM model fixed
)
# pre-conditioner
update_Jacobi = directives.UpdatePreconditioner()
# iteratively balance the scaling of the data misfits
scaling_init = directives.ScalingMultipleDataMisfits_ByEig(chi0_ratio=[1.0, 100.0])
scale_schedule = directives.JointScalingSchedule(verbose=True)

# Create inverse problem
# Optimization
# set lower and upper bounds
lowerbound = np.r_[-2.0 * np.ones(actvMap.nP), 0.0 * np.ones(actvMap.nP)]
upperbound = np.r_[0.0 * np.ones(actvMap.nP), 1e-1 * np.ones(actvMap.nP)]
opt = optimization.ProjectedGNCG(
    maxIter=30,
    lower=lowerbound,
    upper=upperbound,
    maxIterLS=20,
    cg_maxiter=100,
    cg_rtol=1e-4,
)
# create inverse problem
invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
inv = inversion.BaseInversion(
    invProb,
    # directives: evaluate alphas (and data misfits scales) before beta
    directiveList=[
        Alphas,
        scaling_init,
        beta,
        update_smallness,
        targets,
        scale_schedule,
        betaIt,
        MrefInSmooth,
        update_Jacobi,
    ],
)

# invert
pgi_model = inv.run(m0)

# Extract the results
density_model = gravmap * pgi_model
magsus_model = magmap * pgi_model
quasi_geology_model = actvMap * reg.objfcts[0].compute_quasi_geology_model()

# Plot the result with full petrophysical information
fig, ax = plt.subplots(3, 4, figsize=(15, 10))
for _, axx in enumerate(ax):
    for _, axxx in enumerate(axx):
        axxx.set_aspect(1)
        axxx.tick_params(labelsize=ticksize)

indx = 15
indy = 17
indz = -9
# geology model
mesh.plot_slice(
    quasi_geology_model,
    normal="X",
    ax=ax[0, 0],
    clim=[0, 2],
    ind=indx,
    pcolor_opts={"cmap": "inferno_r"},
)
mesh.plot_slice(
    quasi_geology_model,
    normal="Y",
    ax=ax[0, 1],
    clim=[0, 2],
    ind=indy,
    pcolor_opts={"cmap": "inferno_r"},
)
geoplot = mesh.plot_slice(
    quasi_geology_model,
    normal="Z",
    ax=ax[0, 2],
    clim=[0, 2],
    ind=indz,
    pcolor_opts={"cmap": "inferno_r"},
)
geocb = plt.colorbar(geoplot[0], cax=ax[0, 3], ticks=[0, 1, 2])
geocb.set_ticklabels(["BCK", "PK", "VK"])
geocb.set_label("Quasi-Geology model\n(Rock units classification)", fontsize=16)
ax[0, 3].set_aspect(10)

# gravity model
mesh.plot_slice(
    density_model,
    normal="X",
    ax=ax[1, 0],
    clim=[-1, 0],
    ind=indx,
    pcolor_opts={"cmap": "Blues_r"},
)
mesh.plot_slice(
    density_model,
    normal="Y",
    ax=ax[1, 1],
    clim=[-1, 0],
    ind=indy,
    pcolor_opts={"cmap": "Blues_r"},
)
denplot = mesh.plot_slice(
    density_model,
    normal="Z",
    ax=ax[1, 2],
    clim=[-1, 0],
    ind=indz,
    pcolor_opts={"cmap": "Blues_r"},
)
dencb = plt.colorbar(denplot[0], cax=ax[1, 3])
dencb.set_label("Density contrast\nmodel (g/cc)", fontsize=16)
ax[1, 3].set_aspect(10)

# magnetic model
mesh.plot_slice(
    magsus_model,
    normal="X",
    ax=ax[2, 0],
    clim=[0, 0.025],
    ind=indx,
    pcolor_opts={"cmap": "Reds"},
)
mesh.plot_slice(
    magsus_model,
    normal="Y",
    ax=ax[2, 1],
    clim=[0, 0.025],
    ind=indy,
    pcolor_opts={"cmap": "Reds"},
)
susplot = mesh.plot_slice(
    magsus_model,
    normal="Z",
    ax=ax[2, 2],
    clim=[0, 0.025],
    ind=indz,
    pcolor_opts={"cmap": "Reds"},
)
suscb = plt.colorbar(susplot[0], cax=ax[2, 3])
suscb.set_label("Magnetic susceptibility\nmodel (SI)", fontsize=16)
ax[2, 3].set_aspect(10)

# overlay true geology model for comparison
indslicexplot = mesh.gridCC[:, 0] == mesh.cell_centers_x[indx]
indsliceyplot = mesh.gridCC[:, 1] == mesh.cell_centers_y[indy]
indslicezplot = mesh.gridCC[:, 2] == mesh.cell_centers_z[indz]
for i in range(3):
    for j, (plane, indd) in enumerate(
        zip([[1, 2], [0, 2], [0, 1]], [indslicexplot, indsliceyplot, indslicezplot])
    ):
        utils.plot2Ddata(
            mesh.gridCC[indd][:, plane],
            true_geology[indd],
            nx=100,
            ny=100,
            contourOpts={"alpha": 0},
            clim=[0, 2],
            ax=ax[i, j],
            level=True,
            ncontour=2,
            levelOpts={"colors": "grey", "linewidths": 2, "linestyles": "--"},
            method="nearest",
        )

# plot the locations of the cross-sections
for i in range(3):
    ax[i, 0].plot(
        mesh.cell_centers_y[indy] * np.ones(2), [-300, 500], c="k", linestyle="dotted"
    )
    ax[i, 0].plot(
        [
            data_mag.survey.receiver_locations[:, 1].min(),
            data_mag.survey.receiver_locations[:, 1].max(),
        ],
        mesh.cell_centers_z[indz] * np.ones(2),
        c="k",
        linestyle="dotted",
    )
    ax[i, 0].set_xlim(
        [
            data_mag.survey.receiver_locations[:, 1].min(),
            data_mag.survey.receiver_locations[:, 1].max(),
        ],
    )

    ax[i, 1].plot(
        mesh.cell_centers_x[indx] * np.ones(2), [-300, 500], c="k", linestyle="dotted"
    )
    ax[i, 1].plot(
        [
            data_mag.survey.receiver_locations[:, 0].min(),
            data_mag.survey.receiver_locations[:, 0].max(),
        ],
        mesh.cell_centers_z[indz] * np.ones(2),
        c="k",
        linestyle="dotted",
    )
    ax[i, 1].set_xlim(
        [
            data_mag.survey.receiver_locations[:, 0].min(),
            data_mag.survey.receiver_locations[:, 0].max(),
        ],
    )

    ax[i, 2].plot(
        mesh.cell_centers_x[indx] * np.ones(2),
        [
            data_mag.survey.receiver_locations[:, 1].min(),
            data_mag.survey.receiver_locations[:, 1].max(),
        ],
        c="k",
        linestyle="dotted",
    )
    ax[i, 2].plot(
        [
            data_mag.survey.receiver_locations[:, 0].min(),
            data_mag.survey.receiver_locations[:, 0].max(),
        ],
        mesh.cell_centers_y[indy] * np.ones(2),
        c="k",
        linestyle="dotted",
    )
    ax[i, 2].set_xlim(
        [
            data_mag.survey.receiver_locations[:, 0].min(),
            data_mag.survey.receiver_locations[:, 0].max(),
        ],
    )
    ax[i, 2].set_ylim(
        [
            data_mag.survey.receiver_locations[:, 1].min(),
            data_mag.survey.receiver_locations[:, 1].max(),
        ],
    )

plt.tight_layout()
plt.show()

# Plot the 2D GMM
fig = plt.figure(figsize=(10, 10))
ax0 = plt.subplot2grid((4, 4), (3, 1), colspan=3)
ax1 = plt.subplot2grid((4, 4), (0, 1), colspan=3, rowspan=3)
ax2 = plt.subplot2grid((4, 4), (0, 0), rowspan=3)
ax = [ax0, ax1, ax2]
reg.objfcts[0].gmm.plot_pdf(flag2d=True, ax=ax, padding=0.5)
ax[0].set_xlabel("Density contrast [g/cc]")
ax[0].set_ylim([0, 5])
ax[2].set_xlim([0, 50])
ax[2].set_ylabel("magnetic Susceptibility [SI]")
ax[1].scatter(
    density_model[actv],
    magsus_model[actv],
    c=quasi_geology_model[actv],
    cmap="inferno_r",
    edgecolors="k",
    label="recovered PGI model",
    alpha=0.5,
)
ax[1].legend()
ax[0].hist(density_model[actv], density=True, bins=50)
ax[2].hist(magsus_model[actv], density=True, bins=50, orientation="horizontal")
plt.show()

Running inversion with SimPEG v0.25.0
Alpha scales: [np.float64(93866.06008355597), np.float64(0.0), np.float64(67275.01771864902), np.float64(0.0), np.float64(130275.13205184965), np.float64(0.0), np.float64(9565653.95888224), np.float64(0.0), np.float64(7108049.060383467), np.float64(0.0), np.float64(20203937.563415848), np.float64(0.0)]
<class 'simpeg.regularization.pgi.PGIsmallness'>
Initial data misfit scales:  [0.97376169 0.02623831]
================================================= Projected GNCG =================================================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS   iter_CG   CG |Ax-b|/|b|  CG |Ax-b|   Comment   
-----------------------------------------------------------------------------------------------------------------
   0  5.67e-06  4.24e+06  9.99e+04  4.24e+06                         0           inf          inf                
   1  5.67e-06  2.43e+05  4.79e+08  2.45e+05    2.08e+02      0     100       2.58e-03     4.19e+03              
geophys. misfits: 248041.9 (target 576.0 [False]); 47260.4 (target 576.0 [False]) | smallness misfit: 319098.5 (target: 23438.0 [False])
Beta cooling evaluation: progress: [248041.9  47260.4]; minimum progress targets: [3470231.3  572697.8]
mref changed in  809  places
   2  5.67e-06  7.78e+03  1.58e+08  8.67e+03    2.05e+01      0     100       4.70e-03     1.67e+03              
geophys. misfits: 7281.1 (target 576.0 [False]); 26118.6 (target 576.0 [False]) | smallness misfit: 56101.6 (target: 23438.0 [False])
Beta cooling evaluation: progress: [ 7281.1 26118.6]; minimum progress targets: [198433.5  37808.3]
mref changed in  17  places
   3  5.67e-06  4.73e+03  1.41e+08  5.53e+03    2.20e+01      0     100       4.14e-02     3.74e+03              
geophys. misfits: 4079.2 (target 576.0 [False]); 28761.1 (target 576.0 [False]) | smallness misfit: 54791.4 (target: 23438.0 [False])
Beta cooling evaluation: progress: [ 4079.2 28761.1]; minimum progress targets: [ 5824.9 20894.9]
mref changed in  4  places
   4  5.67e-06  8.14e+02  1.38e+08  1.60e+03    2.05e+01      0     100       4.52e-02     4.21e+03              
geophys. misfits: 761.6 (target 576.0 [False]); 2755.2 (target 576.0 [False]) | smallness misfit: 47336.5 (target: 23438.0 [False])
Beta cooling evaluation: progress: [ 761.6 2755.2]; minimum progress targets: [ 3263.4 23008.9]
mref changed in  0  places
   5  5.67e-06  4.48e+02  1.37e+08  1.22e+03    2.04e+01      0     100       1.23e-01     3.06e+03              
geophys. misfits: 446.8 (target 576.0 [True]); 474.2 (target 576.0 [True]) | smallness misfit: 45859.8 (target: 23438.0 [False])
Beta cooling evaluation: progress: [446.8 474.2]; minimum progress targets: [ 691.2 2204.2]
Warming alpha_pgi to favor clustering:  1.2518416567474713
mref changed in  1  places
   6  5.67e-06  4.63e+02  1.54e+08  1.33e+03    4.01e+01      0     100       1.71e-01     2.77e+03              
geophys. misfits: 464.6 (target 576.0 [True]); 396.4 (target 576.0 [True]) | smallness misfit: 42238.8 (target: 23438.0 [False])
Beta cooling evaluation: progress: [464.6 396.4]; minimum progress targets: [691.2 691.2]
Warming alpha_pgi to favor clustering:  1.6855021388746712
mref changed in  0  places
Add mref to Smoothness. Changes in mref happened in 0.0 % of the cells
   7  5.67e-06  4.71e+02  1.75e+08  1.46e+03    5.31e+01      0     100       9.63e-02     1.55e+03              
geophys. misfits: 426.8 (target 576.0 [True]); 2124.3 (target 576.0 [False]) | smallness misfit: 33199.6 (target: 23438.0 [False])
Updating scaling for data misfits by  1.3496881117382673
New scales: [0.96490844 0.03509156]
Beta cooling evaluation: progress: [ 426.8 2124.3]; minimum progress targets: [691.2 691.2]
Decreasing beta to counter data misfit increase.
mref changed in  0  places
   8  2.83e-06  4.09e+02  1.93e+08  9.55e+02    2.77e+01      0     100       3.31e-02     3.52e+03              
geophys. misfits: 406.9 (target 576.0 [True]); 471.4 (target 576.0 [True]) | smallness misfit: 33731.4 (target: 23438.0 [False])
Beta cooling evaluation: progress: [406.9 471.4]; minimum progress targets: [ 691.2 1699.4]
Warming alpha_pgi to favor clustering:  2.2227190284226253
mref changed in  1  places
   9  2.83e-06  4.08e+02  2.20e+08  1.03e+03    2.10e+01      0     100       6.64e-02     8.86e+02              
geophys. misfits: 364.4 (target 576.0 [True]); 1618.5 (target 576.0 [False]) | smallness misfit: 30587.8 (target: 23438.0 [False])
Updating scaling for data misfits by  1.580755970795948
New scales: [0.94563671 0.05436329]
Beta cooling evaluation: progress: [ 364.4 1618.5]; minimum progress targets: [691.2 691.2]
Decreasing beta to counter data misfit increase.
mref changed in  0  places
  10  1.42e-06  3.59e+02  2.51e+08  7.15e+02    3.89e+01      0     100       2.34e-02     2.07e+03              
geophys. misfits: 309.0 (target 576.0 [True]); 1230.8 (target 576.0 [False]) | smallness misfit: 32816.4 (target: 23438.0 [False])
Updating scaling for data misfits by  1.864318604776096
New scales: [0.90319796 0.09680204]
Beta cooling evaluation: progress: [ 309.  1230.8]; minimum progress targets: [ 691.2 1294.8]
Decreasing beta to counter data misfit increase.
mref changed in  2  places
  11  7.08e-07  3.63e+02  2.61e+08  5.48e+02    2.28e+01      2     100       1.99e-02     2.75e+03              
geophys. misfits: 286.7 (target 576.0 [True]); 1074.5 (target 576.0 [False]) | smallness misfit: 33591.4 (target: 23438.0 [False])
Updating scaling for data misfits by  2.0091306635723076
New scales: [0.82282004 0.17717996]
Beta cooling evaluation: progress: [ 286.7 1074.5]; minimum progress targets: [691.2 984.6]
Decreasing beta to counter data misfit increase.
mref changed in  1  places
  12  3.54e-07  3.17e+02  3.06e+08  4.25e+02    2.18e+01      1     100       2.61e-02     6.40e+03              
geophys. misfits: 286.2 (target 576.0 [True]); 459.1 (target 576.0 [True]) | smallness misfit: 38452.9 (target: 23438.0 [False])
Beta cooling evaluation: progress: [286.2 459.1]; minimum progress targets: [691.2 859.6]
Warming alpha_pgi to favor clustering:  3.631216537376991
mref changed in  12  places
  13  3.54e-07  2.83e+02  4.44e+08  4.40e+02    2.11e+01      0     100       3.79e-02     5.28e+03              
geophys. misfits: 221.1 (target 576.0 [True]); 569.6 (target 576.0 [True]) | smallness misfit: 37962.7 (target: 23438.0 [False])
Beta cooling evaluation: progress: [221.1 569.6]; minimum progress targets: [691.2 691.2]
Warming alpha_pgi to favor clustering:  6.566317839227464
mref changed in  3  places
  14  3.54e-07  2.71e+02  6.74e+08  5.10e+02    2.18e+01      2     100       3.25e-02     2.63e+03              
geophys. misfits: 219.5 (target 576.0 [True]); 512.2 (target 576.0 [True]) | smallness misfit: 35895.8 (target: 23438.0 [False])
Beta cooling evaluation: progress: [219.5 512.2]; minimum progress targets: [691.2 691.2]
Warming alpha_pgi to favor clustering:  12.30677038035699
mref changed in  0  places
Add mref to Smoothness. Changes in mref happened in 0.0 % of the cells
  15  3.54e-07  3.52e+02  8.16e+08  6.40e+02    2.22e+01      0     100       2.81e-02     2.70e+03              
geophys. misfits: 296.9 (target 576.0 [True]); 605.2 (target 576.0 [False]) | smallness misfit: 26206.9 (target: 23438.0 [False])
Updating scaling for data misfits by  1.9401691154584642
New scales: [0.70532725 0.29467275]
Beta cooling evaluation: progress: [296.9 605.2]; minimum progress targets: [691.2 691.2]
mref changed in  0  places
  16  3.54e-07  2.30e+02  7.86e+08  5.09e+02    2.21e+01      0     100       3.04e-02     4.12e+03              
geophys. misfits: 303.4 (target 576.0 [True]); 55.0 (target 576.0 [True]) | smallness misfit: 25764.7 (target: 23438.0 [False])
Beta cooling evaluation: progress: [303.4  55. ]; minimum progress targets: [691.2 691.2]
Warming alpha_pgi to favor clustering:  76.16112272425919
mref changed in  0  places
Add mref to Smoothness. Changes in mref happened in 0.0 % of the cells
  17  3.54e-07  7.07e+02  2.62e+09  1.64e+03    3.26e+01      0     100       1.28e-01     4.77e+03              
geophys. misfits: 631.6 (target 576.0 [False]); 887.0 (target 576.0 [False]) | smallness misfit: 20727.0 (target: 23438.0 [True])
Beta cooling evaluation: progress: [631.6 887. ]; minimum progress targets: [691.2 691.2]
Decreasing beta to counter data misfit increase.
mref changed in  0  places
  18  1.77e-07  3.78e+02  2.93e+09  8.97e+02    4.17e+01      0     100       2.33e-02     3.67e+03              
geophys. misfits: 473.4 (target 576.0 [True]); 148.1 (target 576.0 [True]) | smallness misfit: 20701.2 (target: 23438.0 [True])
All targets have been reached
Beta cooling evaluation: progress: [473.4 148.1]; minimum progress targets: [691.2 709.6]
Warming alpha_pgi to favor clustering:  194.47554568008144
mref changed in  0  places
Add mref to Smoothness. Changes in mref happened in 0.0 % of the cells
------------------------- STOP! -------------------------
1 : |fc-fOld| = 2.7439e+02 <= tolF*(1+|f0|) = 4.2428e+05
0 : |xc-x_last| = 1.1275e+00 <= tolX*(1+|x0|) = 1.0153e-01
0 : |proj(x-g)-x|    = 4.1737e+01 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 4.1737e+01 <= 1e3*eps       = 1.0000e-02
0 : maxIter   =      30    <= iter          =     18
------------------------- DONE! -------------------------
<Figure size 1500x1000 with 12 Axes>
<Figure size 1000x1000 with 4 Axes>