aurora.config.metadata package¶
Submodules¶
aurora.config.metadata.processing module¶
Extend the mt_metadata.transfer_functions.processing.aurora.processing.Processing class with some aurora-specific methods.
- class aurora.config.metadata.processing.EMTFTFHeader(**kwargs)[source]¶
Bases:
ListDictConvenience class for storing metadata for a TF estimate. Based on Gary Egbert’s TFHeader.m originally in iris_mt_scratch/egbert_codes-20210121T193218Z-001/egbert_codes/matlabPrototype_10-13-20/TF/classes
It completely depends on the Processing class
Methods
append(obj)Append an object
copy()Copy object
extend(other[, skip_keys])extend the dictionary from another ListDict object
pop(key)pop item off of dictionary.
remove(key)remove an item based on key or index
sort([inplace])sort the dictionary keys into alphabetical order
update(other)Update from another ListDict
items
keys
values
- class aurora.config.metadata.processing.Processing(**kwargs)[source]¶
Bases:
Processing- Attributes:
- band_edges_dict
- changed
decimation_infoZips decimation level ids to the Decimation objects adn returns as a dict
- decimations
decimations_dictneed to have a dictionary, but it can’t be an attribute cause that
- num_decimation_levels
Methods
add_base_attribute(name, value, value_dict)Add an attribute to _attr_dict so it will be included in the output dictionary
add_decimation_level(decimation_level)add a decimation level
assign_bands(band_edges_dict, sample_rate, ...)Warning: This does not actually tell us how many samples we are decimating down at each level.
assign_decimation_level_data_emtf(sample_rate)Warning: This does not actually tell us how many samples we are decimating down at each level.
attribute_information([name])return a descriptive string of the attribute if none returns for all
copy()Copy object
emtf_tf_header(dec_level_id)Returns a ListDict object that has the information that was in the old EMTF TF
from_dict(meta_dict[, skip_none])fill attributes from a dictionary
from_json(json_str)read in a json string and update attributes of an object
from_series(pd_series)Fill attributes from a Pandas series
from_xml(xml_element)- param xml_element:
XML element
get_attr_from_name(name)Access attribute from the given name.
get_attribute_list()return a list of the attributes
get_decimation_level(level)Get a decimation level for easy access
make_tf_level(dec_level_id)Initialize container for a single decimation level -- "flat" transfer function.
save_as_json([filename, nested, required])Exports self to a JSON
set_attr_from_name(name, value[, ...])Helper function to set attribute from the given name.
setattr_skip_validation(name, value)Set attribute without validation
to_dict([nested, single, required])make a dictionary from attributes, makes dictionary from _attr_list.
to_json([nested, indent, required])Write a json string from a given object, taking into account other class objects contained within the given object.
to_series([required])Convert attribute list to a pandas.Series
to_xml([string, required])make an xml element for the attribute that will add types and units.
update(other[, match])Update attribute values from another like element, skipping None
validate_processing(kernel_dataset)Placeholder.
window_scheme([as_type])Make a dataframe of processing parameters one row per decimation level.
drop_reference_channels
json_fn
set_default_input_output_channels
set_default_reference_channels
set_input_channels
set_output_channels
set_reference_channels
- property decimation_info¶
Zips decimation level ids to the Decimation objects adn returns as a dict
- Returns:
decimation_info – The decimation objects keyed by decimation level id.
- Return type:
- emtf_tf_header(dec_level_id: int) ListDict[source]¶
- Returns a ListDict object that has the information that was in the old EMTF TF
Header object. This may be deprecated in future – it is an artefact of the old matlab implementation.
- Parameters:
dec_level_id (int) – This may tolerate strings in the future, but keep as int for now
- Returns:
tfh (ListDict)
Object with the properties of the old EMTF TransferFunctionHeader class.
- make_tf_level(dec_level_id: int)[source]¶
Initialize container for a single decimation level – “flat” transfer function.
- Parameters:
dec_level_id (int) – This may tolerate strings in the future, but keep as int for now
- Returns:
tf_obj
- Return type:
- save_as_json(filename: str | Path | None = None, nested: bool | None = True, required: bool | None = False) None[source]¶
Exports self to a JSON
- Parameters:
filename (Optional[Union[str, pathlib.Path, None]) – Where to write the json
nested (Optional[bool] = True,) – An mt_metadata argument
required (Optional[bool] = False,) – An mt_metadata argument
Module contents¶
- class aurora.config.metadata.Processing(**kwargs)[source]¶
Bases:
Processing- Attributes:
- band_edges_dict
- changed
decimation_infoZips decimation level ids to the Decimation objects adn returns as a dict
- decimations
decimations_dictneed to have a dictionary, but it can’t be an attribute cause that
- num_decimation_levels
Methods
add_base_attribute(name, value, value_dict)Add an attribute to _attr_dict so it will be included in the output dictionary
add_decimation_level(decimation_level)add a decimation level
assign_bands(band_edges_dict, sample_rate, ...)Warning: This does not actually tell us how many samples we are decimating down at each level.
assign_decimation_level_data_emtf(sample_rate)Warning: This does not actually tell us how many samples we are decimating down at each level.
attribute_information([name])return a descriptive string of the attribute if none returns for all
copy()Copy object
emtf_tf_header(dec_level_id)Returns a ListDict object that has the information that was in the old EMTF TF
from_dict(meta_dict[, skip_none])fill attributes from a dictionary
from_json(json_str)read in a json string and update attributes of an object
from_series(pd_series)Fill attributes from a Pandas series
from_xml(xml_element)- param xml_element:
XML element
get_attr_from_name(name)Access attribute from the given name.
get_attribute_list()return a list of the attributes
get_decimation_level(level)Get a decimation level for easy access
make_tf_level(dec_level_id)Initialize container for a single decimation level -- "flat" transfer function.
save_as_json([filename, nested, required])Exports self to a JSON
set_attr_from_name(name, value[, ...])Helper function to set attribute from the given name.
setattr_skip_validation(name, value)Set attribute without validation
to_dict([nested, single, required])make a dictionary from attributes, makes dictionary from _attr_list.
to_json([nested, indent, required])Write a json string from a given object, taking into account other class objects contained within the given object.
to_series([required])Convert attribute list to a pandas.Series
to_xml([string, required])make an xml element for the attribute that will add types and units.
update(other[, match])Update attribute values from another like element, skipping None
validate_processing(kernel_dataset)Placeholder.
window_scheme([as_type])Make a dataframe of processing parameters one row per decimation level.
drop_reference_channels
json_fn
set_default_input_output_channels
set_default_reference_channels
set_input_channels
set_output_channels
set_reference_channels
- property decimation_info¶
Zips decimation level ids to the Decimation objects adn returns as a dict
- Returns:
decimation_info – The decimation objects keyed by decimation level id.
- Return type:
- emtf_tf_header(dec_level_id: int) ListDict[source]¶
- Returns a ListDict object that has the information that was in the old EMTF TF
Header object. This may be deprecated in future – it is an artefact of the old matlab implementation.
- Parameters:
dec_level_id (int) – This may tolerate strings in the future, but keep as int for now
- Returns:
tfh (ListDict)
Object with the properties of the old EMTF TransferFunctionHeader class.
- make_tf_level(dec_level_id: int)[source]¶
Initialize container for a single decimation level – “flat” transfer function.
- Parameters:
dec_level_id (int) – This may tolerate strings in the future, but keep as int for now
- Returns:
tf_obj
- Return type:
- save_as_json(filename: str | Path | None = None, nested: bool | None = True, required: bool | None = False) None[source]¶
Exports self to a JSON
- Parameters:
filename (Optional[Union[str, pathlib.Path, None]) – Where to write the json
nested (Optional[bool] = True,) – An mt_metadata argument
required (Optional[bool] = False,) – An mt_metadata argument